定向断裂控制爆破下层理页岩的致裂机理

杨国梁 毕京九 董智文 赵桐德 赵建宇 赵康朴

杨国梁, 毕京九, 董智文, 赵桐德, 赵建宇, 赵康朴. 定向断裂控制爆破下层理页岩的致裂机理[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0336
引用本文: 杨国梁, 毕京九, 董智文, 赵桐德, 赵建宇, 赵康朴. 定向断裂控制爆破下层理页岩的致裂机理[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0336
YANG Guoliang, BI Jingjiu, DONG Zhiwen, ZHAO Tongde, ZHAO Jianyu, ZHAO Kangpu. Fracturing mechanism of bedding shale under directional fracture-controlled blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0336
Citation: YANG Guoliang, BI Jingjiu, DONG Zhiwen, ZHAO Tongde, ZHAO Jianyu, ZHAO Kangpu. Fracturing mechanism of bedding shale under directional fracture-controlled blasting[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0336

定向断裂控制爆破下层理页岩的致裂机理

doi: 10.11883/bzycj-2023-0336
基金项目: 国家自然科学基金(51934001)
详细信息
    作者简介:

    杨国梁(1979-  ),男,博士,副教授,yanggl531@163.com

    通讯作者:

    毕京九(1995-  ),男,博士研究生,bijingjiu@126.com

  • 中图分类号: O389; TU452

Fracturing mechanism of bedding shale under directional fracture-controlled blasting

  • 摘要: 为探究定向断裂控制爆破下层理页岩的爆破致裂机理,采用切缝药包,对四种切缝角度下的页岩立方体试件进行爆破试验,采用数字图像相关技术(DIC)对页岩试件表面应变场的演化过程进行监测,分析了微裂纹孕育至宏观裂纹贯通的内在机理,并基于盒维数理论计算了不同切缝角度下页岩试件表面裂纹的分形维数,采用Matlab软件对爆后块度的筛分方法进行了编程分析,开发了全自动的粒径分析程序,实现了粒径圈定的可视化。试验结果表明:试件在不同比例爆距内的裂纹总密度与比例爆距之间存在负相关的幂函数关系,切缝方向与层理弱面的夹角对微观损伤区域出现的位置影响显著,当层理弱面与切缝方向平行时,损伤区域多集中于层理弱面处,对宏观裂纹的扩展路径影响显著,易于形成单一裂纹;层理弱面处的能量泄露是造成页岩爆破破碎效果较差的重要因素,当切缝方向与层理弱面一致时,试件爆后的大块占比较高,爆后块度的分形维数平均值在各组间最低,仅为0.7843,而当切缝方向与层理面垂直时,试件的爆后块度分布较为均匀,爆后块度的分形维数平均值达到了2.5233,爆破破碎效果相对较好。
  • 图  1  页岩切缝角度示意图

    Figure  1.  Schematic diagram of shale fracture angle

    图  2  装药结构示意图

    Figure  2.  Schematic diagram of explosive loading structure

    图  3  不同切缝方向下典型试件的表面裂纹分布图

    Figure  3.  Surface pattern distribution of typical specimens with different cutting directions

    图  4  表面裂纹场分析区域

    Figure  4.  Surface crack field analysis area

    图  5  裂纹密度随比例爆距的变化曲线

    Figure  5.  Variation curve of crack density with proportional explosion distance

    图  6  不同比例爆距的区域裂纹密度变化

    Figure  6.  Crack density changes in the explosion zone with different proportions

    图  7  各切缝角度下的典型试件的盒维数拟合曲线

    Figure  7.  Box dimension fitting curve of typical specimens at various slit angles

    图  8  试件B-0纵向应变场演化过程

    Figure  8.  Longitudinal strain field evolution process of typical specimens of group B-0

    图  9  试件B-90纵向应变场演化过程(εxx

    Figure  9.  Evolution process of longitudinal strain field (εxx) of typical specimens of group B-90

    图  11  试件B-90纵向应变场演化过程(εyy

    Figure  11.  Evolution process of longitudinal strain field (εyy) of typical specimens of group B-90

    图  10  试件B-90纵向应变场演化过程(εxy

    Figure  10.  Evolution process of longitudinal strain field (εxy) of typical specimens of group B-90

    图  12  试件B-90宏观裂纹的扩展过程

    Figure  12.  Macroscopic crack expansion process of typical specimens of B-90 group shale

    图  13  块度分析程序流程图

    Figure  13.  Blockiness analysis program flow chart

    图  14  试件B-C0块度分布特征

    Figure  14.  Fragment size distribution characteristics of specimens B-C0

    图  15  试件B-0块度分布特征

    Figure  15.  Fragment size distribution characteristics of specimens B-0

    图  16  试件B-45块度分布特征

    Figure  16.  Fragment size distribution characteristics of specimens B-45

    图  17  试件B-90块度分布特征

    Figure  17.  Fragment size distribution characteristics of specimens B-90

    图  18  B-C0试件沿水平层理面的破坏

    Figure  18.  Failure of B-C0 specimen along horizontal bedding plane

    图  19  B-0试件沿水平层理面的破坏

    Figure  19.  Destruction of B-0 specimen along horizontal bedding plane

    图  20  试件B-C0块度分形维数结果

    Figure  20.  Fractal dimension results of specimens B-C0

    图  21  试件B-0块度分形维数结果

    Figure  21.  Fractal dimension results of specimens B-0

    图  22  试件B-45块度分形维数结果

    Figure  22.  Fractal dimension results of specimens B-45

    图  23  试件B-90块度分形维数结果

    Figure  23.  Fractal dimension results of specimens B-90

    图  24  各组试件的爆后碎块分形维数

    Figure  24.  Fractal dimension of post-blast fragments for each group of specimens

    表  1  页岩基础物理力学参数

    Table  1.   Physical and Mechanical Parameters of Shale

    层理倾角/(°) 纵波波速/(m·s−1) 密度/(g·cm−3) 弹性模量/GPa 单轴抗压强度/MPa 单轴抗拉强度/MPa
    0 3050.93 2.53 11.604 130.44 3.189
    30 3100.53 2.48 11.720 104.41 3.753
    60 3184.79 2.57 11.331 93.40 4.475
    90 3212.55 2.55 12.373 114.18 4.561
    下载: 导出CSV

    表  2  各组试件的块度分布指标

    Table  2.   Block size distribution index of orthogonal test

    试件d10/mmd50/mmd90/mmdmax/mmCUCC
    B-C0-148.0988.00102.20113.911.161.58
    B-C0-241.2774.1494.00118.441.271.42
    B-0-123.5851.7978.7285.621.521.45
    B-0-221.9838.0144.3563.221.171.48
    B-45-119.8853.6088.8998.081.661.63
    B-45-221.8341.5373.3575.911.771.08
    B-90-131.7049.0372.9982.091.491.04
    B-90-230.3152.2773.7088.421.411.22
    下载: 导出CSV
  • [1] 陈军斌. 页岩气储层液体火药高能气体压裂增产关键技术研究 [M]. 北京. 科学出版社, 2017.
    [2] 索明武. 大庆长垣薄差层二次增效射孔技术研究——以萨中和杏89区为试验区块 [D]. 杭州: 浙江大学, 2008: 1-2.
    [3] WAN Y, PAN Z J, TANG S H, et al. An experimental investigation of diffusivity and porosity anisotropy of a Chinese gas shale [J]. Journal of Natural Gas Science and Engineering, 2015, 23: 70–79. DOI: 10.1016/j.jngse.2015.01.024.
    [4] NIANDOU H, SHAO J F, HENRY J P, et al. Laboratory investigation of the mechanical behaviour of Tournemire shale [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3–16. DOI: 10.1016/S1365-1609(97)80029-9.
    [5] HORNBY B E, SCHWARTZ L M, HUDSON J A. Anisotropic effective-medium modeling of the elastic properties of shales [J]. Geophysics, 1994, 59(10): 1570–1583. DOI: 10.1190/1.1443546.
    [6] LI G F, JIN Z J, LI X, et al. Experimental study on mechanical properties and fracture characteristics of shale layered samples with different mineral components under cyclic loading [J]. Marine and Petroleum Geology, 2023, 150: 106114. DOI: 10.1016/j.marpetgeo.2023.106114.
    [7] GUO W H, GUO Y T, YANG H Z, et al. Tensile mechanical properties and AE characteristics of shale in Triaxial Brazilian splitting tests [J]. Journal of Petroleum Science and Engineering, 2022, 219: 111080. DOI: 10.1016/j.petrol.2022.111080.
    [8] WANG C Y, LI S J, ZHANG D M, et al. Study on the effects of water content and layer orientation on mechanical properties and failure mechanism of shale [J]. Energy, 2023, 271: 127050. DOI: 10.1016/j.energy.2023.127050.
    [9] WANG H, LI Y, CAO S G, et al. Fracture toughness analysis of HCCD specimens of Longmaxi shale subjected to mixed mode I-II loading [J]. Engineering Fracture Mechanics, 2020, 239: 107299. DOI: 10.1016/j.engfracmech.2020.107299.
    [10] 衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究 [J]. 岩石力学与工程学报, 2015, 34(2): 228–237. DOI: 10.13722/j.cnki.jrme.2015.02.002.

    HENG S, YANG C H, GUO Y T, et al. Influence of bedding planes on hydraulic fracture propagation in shale formations [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 228–237. DOI: 10.13722/j.cnki.jrme.2015.02.002.
    [11] 李玉琳. 龙马溪组层状页岩宏细观破坏行为及模型研究 [D]. 北京: 中国矿业大学(北京), 2019: 92-104.

    LI Y L. Investigation on macroscopic and microscopic failure behavior and model study of layered Longmaxi shale [D]. Beijing: China University of Mining and Technology (Beijing), 2019: 92-104.
    [12] SHI X S, YAO W, LIU D A, et al. Experimental study of the dynamic fracture toughness of anisotropic black shale using notched semi-circular bend specimens [J]. Engineering Fracture Mechanics, 2019, 205: 136–151. DOI: 10.1016/j.engfracmech.2018.11.027.
    [13] CHONG K P, KURUPPU M D. New specimen for fracture toughness determination for rock and other materials [J]. International Journal of Fracture, 1984, 26(2): R59–R62. DOI: 10.1007/BF01157555.
    [14] NEJATI M, AMINZADEH A, AMANN F, et al. Mode I fracture growth in anisotropic rocks: theory and experiment [J]. International Journal of Solids and Structures, 2020, 195: 74–90. DOI: 10.1016/j.ijsolstr.2020.03.004.
    [15] JU M H, LI J C, LI J, et al. Loading rate effects on anisotropy and crack propagation of weak bedding plane-rich rocks [J]. Engineering Fracture Mechanics, 2020, 230: 106983. DOI: 10.1016/j.engfracmech.2020.106983.
    [16] 杨永琦, 张奇, 于慕松, 等. 定向控制断裂爆破技术的研究 [J]. 煤炭学报, 1996, 21(3): 60–63. DOI: 10.3321/j.issn:0253-9993.1996.03.013.

    YANG Y Q, ZHANG Q, YU M S, et al. Technology of directional split blasting [J]. Journal of China Coal Society, 1996, 21(3): 60–63. DOI: 10.3321/j.issn:0253-9993.1996.03.013.
    [17] 杨仁树, 左进京, 杨国梁. 切缝药包定向控制爆破的试验研究 [J]. 振动与冲击, 2018, 37(24): 24–29. DOI: 10.13465/j.cnki.jvs.2018.24.005.

    YANG R S, ZUO J J, YANG G L. An experimental study on slotted cartridge directional controlled blasting [J]. Journal of Vibration and Shock, 2018, 37(24): 24–29. DOI: 10.13465/j.cnki.jvs.2018.24.005.
    [18] 王雁冰, 李书萱, 耿延杰, 等. 切缝药包爆破定向断裂机理及围岩损伤特性分析 [J]. 工程科学学报, 2023, 45(4): 521–532. DOI: 10.13374/j.issn2095-9389.2022.04.20.002.

    WANG Y B, LI S X, GENG Y J, et al. Directional fracture mechanism and surrounding rock damage characteristics of slotted cartridge blasting [J]. Chinese Journal of Engineering, 2023, 45(4): 521–532. DOI: 10.13374/j.issn2095-9389.2022.04.20.002.
    [19] 岳中文, 胡庆文, 陈彪. 爆生裂纹与层理缺陷相互作用的实验研究 [J]. 振动与冲击, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017.

    YUE Z W, HU Q W, CHEN B. An experimental study of the interaction between the blast-induced crack and the bedding defect [J]. Journal of Vibration and Shock, 2017, 36(12): 99–104. DOI: 10.13465/j.cnki.jvs.2017.12.017.
    [20] 谢和平, 高峰, 周宏伟, 等. 岩石断裂和破碎的分形研究 [J]. 防灾减灾工程学报, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.

    XIE H P, GAO F, ZHOU H W, et al. Fractal fracture and fragmentation in rocks [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(4): 1–9. DOI: 10.3969/j.issn.1672-2132.2003.04.001.
    [21] 黄志辉. 台阶爆破块度分布测定及其优化研究 [D]. 泉州: 华侨大学, 2005: 22-38.

    HUANG Z H. Study on determination and optimization of the bench blasting fragmentation distribution [D]. Quanzhou: Huaqiao University, 2005: 22-38.
    [22] 骆浩浩, 杨仁树, 马鑫民, 等. 石禄铁矿扇形中深孔爆破块度分布特征研究 [J]. 采矿与安全工程学报, 2023, 40(2): 371–378. DOI: 10.13545/j.cnki.jmse.2022.0159.

    LUO H H, YANG R S, MA X M, et al. Study on the distribution characteristics of deep hole blasting in the fan-shaped hole of Shilu Iron Mine [J]. Journal of Mining & Safety Engineering, 2023, 40(2): 371–378. DOI: 10.13545/j.cnki.jmse.2022.0159.
    [23] 杨仁树, 李炜煜, 杨国梁, 等. 炸药类型对富铁矿爆破效果影响的试验研究 [J]. 爆炸与冲击, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.

    YANG R S, LI W Y, YANG G L, et al. Experimental study on the blasting effects of rich-iron ore with different explosives [J]. Explosion and Shock Waves, 2020, 40(6): 065201. DOI: 10.11883/bzycj-2019-0396.
    [24] 吕林. 图像处理技术在岩体块度分析中的应用 [D]. 武汉: 武汉理工大学, 2011: 59-75.

    LV L. The application of photography - image processing in the analysis of rock fragmentation [D]. Wuhan: Wuhan University of Technology, 2011: 59-75.
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2024-01-16
  • 网络出版日期:  2024-03-01

目录

    /

    返回文章
    返回