Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space
-
摘要: 在自行搭建的5 L粉尘爆炸火焰传播特性实验装置中,实验研究了半封闭空间内氢化镁(MgH2)粉尘爆炸火焰的传播特性。实验结果表明:随MgH2粉尘浓度的提高,MgH2粉尘爆炸火焰由点火至稳定传播所用时间先缩短后延长以及预热区宽度先减小后增大,火焰亮度、锋面平滑度、及火焰传播速度呈先提高后降低的趋势,并在质量浓度为800 g/m3时呈最佳燃烧状态。不同浓度的MgH2粉尘爆炸火焰传播瞬时速度整体呈波动趋势,波动幅度随浓度的提高而先减小后增大,800 g/m3时波动幅度最小,瞬时传播速度变化趋势随浓度的变化呈现不同的变化趋势。最后,根据MgH2爆炸产物的XRD测试结果,分析MgH2粉尘爆炸反应机理,发现MgH2粉尘爆炸是以MgH2燃烧反应为主并伴随有MgH2和Mg(OH)2分解以及Mg和H2氧化等多个总包反应的复杂过程,爆炸反应的最终产物为MgO。Abstract: In the experiment conducted using a custom-built 5-L dust explosion flame propagation apparatus, the focus of the study was the characteristics of the flame propagation of magnesium hydride (MgH2) dust explosions within a semi-enclosed space. The experimental results showed that as the concentration of MgH2 dust increased, the time required for the MgH2 dust explosion flame to transfer from ignition to stable propagation decreased initially, but then increased as the dust concentration further increased. Similarly, the width of the preheating zone followed the same pattern. Initially, it decreased with increasing dust concentration, but once the concentration reached a certain threshold, it started to increase. Beyond that, the flame brightness, smoothness of the flame front, and flame propagation speed all showed similar trends. They initially increased as the MgH2 dust concentration increased, suggesting enhanced combustion activity. However, as the concentration further increased, these characteristics started to decline, indicating a diminishing combustion efficiency. The best combustion state was observed at a dust mass concentration of 800 g/m3. The instantaneous speed of the MgH2 dust explosion flame propagation exhibited a fluctuating pattern across different concentrations. The fluctuation amplitude initially decreased as the dust concentration increased, suggesting a more stable flame propagation. However, beyond a certain concentration, the fluctuation amplitude began to increase again. It is worth noting that the change in instantaneous propagation speed variation displayed different trends as the concentration varied. The exact behaviors were found to be dependent on the particular concentration level. Finally, analysis of the X-ray diffraction (XRD) test results of the MgH2 explosion products revealed a complex reaction mechanism. The MgH2 dust explosion primarily involved the combustion reaction of MgH2 but also included multiple overall reactions such as the decomposition of MgH2 and Mg(OH)2, as well as the oxidation of Mg and H2. The final product of the explosion reaction was identified to be MgO.
-
Key words:
- semi-enclosed space /
- hydrogen storage metal /
- magnesium hydride /
- explosion /
- flame propagation
-
随着精确制导钻地武器打击精度的提高,侵彻能力逐步增强,这使防护工程面临着巨大的威胁[1]。遮弹层作为一种能提高防护工程生存能力的技术方法,引起了国内外防护专家的高度重视,相继研制出了如空心三棱柱遮弹层[2]、混凝土栅板遮弹层[3]、含高强RPC球柱的复合遮弹层[4]等许多遮弹层。目前,遮弹层材料、结构形式等研究成为当今防护工程研究的重要课题。石少卿等[5]依据贝壳珍珠层的结构及其增强机理研制了一种新型蜂窝遮弹层结构:以外部是六边形钢管、内部是混凝士的钢管混凝土为基本单元,多个单元钢管混凝土平行排列,且相互连接,形成了蜂窝状结构层[6],结构如图 1所示。由于六边形钢管借助内填的混凝土增强了钢管的稳定性,而钢管内的混凝土借助钢管的约束作用,使混凝土处于三向受压状态,从而使核心混凝土具有更高的抗压强度和延性[7];另外可将2个以上结构层重叠组合成多层遮弹层结构,层与层应错开适当位置,交错布置,形成多层蜂窝遮弹层。本文中对单层蜂窝遮弹层的抗弹丸侵彻性能进行实验研究,结果表明同钢筋混凝土遮弹层相比,蜂窝遮弹层的破坏面积明显较小,且弹体发生了较明显的偏航现象。
1. 实验
1.1 靶体
选用的混凝土抗压强度为90 MPa;钢筋抗拉强度为370 MPa;靶体厚度为200 mm,直径为640 mm。靶体有2类:(1)蜂窝遮弹层靶(honeycomb shelter target, HST),结构如图 2所示,由7个六边形钢管混凝土单元组成,其中六边形钢管内边长120 mm,高度200 mm,钢板厚4 mm;(2)钢筋混凝土靶(reinforced concrete target, RCT),在距离上下表面50 mm处各设置1层规格为70 mm×70 mm的钢筋网,钢筋直径为18 mm,如图 3所示。
1.2 实验方法
弹体长度为70 mm,中段直径为10 mm,长径比为7,距尾部端面60 mm长度内的直径为15 mm,头部曲径比为1。实验通过改变火药用量调整弹丸着靶速度,采用锡箔靶和电子测时仪测定弹丸着靶速度,实验现场布置见如图 4所示。
2. 实验结果及分析
2.1 侵彻结果
对2种靶体进行侵彻实验,实验主要参数与结果,如表 1所示,表中v为弹体速度,α为弹体入射角,β为弹体偏转角,H为侵彻深度,其中正面为迎弹面,背面为背弹面。
表 1 实验数据Table 1. Experimental dataNo. v/(m·s-1) α/(°) β/(°) H/mm 靶体破坏描述 HST1 566.3 90 10 贯穿 正面:仅有1个六边形单元有漏斗坑,面积约180 cm2。背面:
1个单元有明显漏斗坑,周边单元局部混凝土被震落,面积约500 cm2。HST2 681.7 90 18 贯穿 正面:仅有1个六边形单元有漏斗坑,面积约190 cm2。背面:
1个单元有明显漏斗坑,周边单元局部混凝土被震落,面积约600 cm2。HST3 783.3 90 6 贯穿 正面:仅有1个六边形单元有漏斗坑,面积约320 cm2。背面:
1个单元有明显漏斗坑,周边单元局部混凝土被震落,面积约650 cm2。RCT1 568.6 90 2 贯穿 正面:有明显漏斗坑,面积约320 cm2,有7条明显裂纹。
背面:有明显漏斗坑,局部隆起,面积约700 cm2,有3条裂纹。RCT2 696.6 90 10 贯穿 正面:有漏斗坑,面积约450 cm2,有13条裂纹,裂纹最宽1 mm。
背面:有明显漏斗坑,面积约1 100 cm2;有10条裂纹,裂纹最宽为3 mm。与钢筋混凝土靶体相比,钢管的存在会使弹体在侵彻过程中受到附加力的作用,从而使弹体更易发生偏航现象;同时六边形钢管对其内的混凝土约束作用,提高了混凝土抗压强度及其他性能,从而使蜂窝靶体的破坏面积较小;同时六边形单元把蜂窝靶体分为若干个独立单元,使各个单元之间的破坏相互影响小,因此破坏仅仅局限在弹靶接触的六边形单元内,在靶体上不会出现放射性裂缝,如图 5所示。
2.2 六边形单元抗侵彻分析
在冲击荷载的作用下,钢管混凝土结构能够很好地约束核心混凝土的变形以及裂缝的产生、发展,并且压缩波的出现也增强了核心混凝土抵抗冲击的能力,因此,钢管混凝土结构具有良好的动力性能以及抗冲击侵彻能力[8]。从应力波传播的角度来分析六边形蜂窝靶体抗侵彻实验结果。
在弹体侵彻六边形单元内的混凝土时,出现的应力波将以波阵面形式在构件中传播。根据应力波有关理论[9],应力波在2种介质界面处会产生反射波和透射波,同时应力波的入射波和反射波又遵循叠加原理。由于钢的介质密度大于混凝土的介质密度,反射波以压缩波的形式出现,所以混凝土又会受到1个压缩波的作用,这将提高混凝土的抗压强度及变形能力。从实验结果可以发现,在弹体速度相差不大时,蜂窝结构靶体的破坏面积都小于钢筋混凝土靶体的破坏面积,例如图 5(a)中正面破坏面积为180 cm2,而图 5(b)中正面破坏面积达320 cm2;在弹体侵彻过程中,弹体表面也会受到1个压缩波的作用。如果在弹体侵彻时弹着点不处于六边形单元中心的位置,这时弹体会受到不对称力的作用。当射弹的速度增大,产生的冲击波就变强,在界面处反射的压缩波幅值就高,不对称力就会越大,弹体偏航角就会越大。在侵彻HST1和HST2时弹着点都离六边形单元中心远,弹体速度从566.3 m/s增大到681.7 m/s时,弹体偏航角从10°增大到18°;当弹体速度为783.3 m/s弹体偏航角反而变小为6°,这主要与弹着点处于六边形单元中心附近的有关。在侵彻钢筋混凝土靶体时,弹体偏转角较小,当弹体速度为568.6 m/s时,弹体偏航角为2°;当弹体速度为696.6 m/s时,弹体偏航角为10°,从图 5(d)靶体正面图可以看到,弹体恰好命中在钢筋上,这使弹体偏转角增大。从实验结果及分析可以看出,在侵彻蜂窝结构靶体时,弹体更易发生偏航现象。
2.3 蜂窝结构抗侵彻分析
蜂窝结构是由六边形钢管混凝土单元组合而成的。根据分析可知[6],当弹体以速度v垂直侵彻蜂窝遮弹层的六边形钢管混凝土构件时,会产生1个大小为σn的压缩波σ1;压缩波σ1遇到钢管(界面B处)时,反射1个大小为0.63σn的压缩波σ′11,同时还向钢管中透射1个大小为1.63σn的压缩波σ21;透射波σ21 将继续前进并到达钢管与另一块混凝土的界面C处,在界面C处反射1个压缩波σ′21,同时还向混凝土中透射压缩波σ31;反射波σ′21遇到界面B, 有σ′12透过界面B返回第1块混凝土中,同时产生反射波σ22再向界面C传播。所产生的透射波将继续前进并到达钢管与另一块混凝土的界面,反射与透射现象再次出现。这次前后介质的阻抗比变为上次阻抗比的倒数,如图 6所示,图中AB和CD部分为混凝土,BC部分为钢管。
假设六边形钢管的厚度为h,则当时间t=hc2(其中c为波在介质中的传播速度),这一透射应力波到达界面,产生反射应力波σ′21以及透射入另一块混凝土中的σ31为:
{σ′21=A1−A2A1+A2σ21=−0.63σ21σ31=21+A2/A1σ21=−0.37σ21=−0.6σn (1) 式中:A1=ρ1c1,A2=ρ2c2。
反射波σ′21在t=hc2时遇到界面B, 有σ′12透过界面B返回第1块混凝土中,同时反射σ22再向界面C传播,由于阻抗比没有发生变化,则有
σ22=−0.63σ′21=(−0.63)2σ21 (2) 图 7所示为通过钢管后应力波的变化。由图 7可以发现,透过界面C的应力每隔t=hc2时间便增加一部分,而且由式(2)可以看出,进入第2块混凝土中的应力是按等比例增加的。从理论上分析,经过无穷次在钢管中两端界面上反射与透射之后,进入第2块混凝土中的压缩应力波应该会等于射弹在第1块混凝土中产生的压缩波σn。然而在实际情况中的应力波也并非理想的弹性波,在传播过程中有衰减。因此,有了钢管的阻隔作用,射弹产生的压缩波经过钢管之后除了升压时间增长之外,其峰值压力也会减弱,这就使远处的混凝土不易发生破坏。
在实验中,蜂窝结构靶体正面混凝土的破坏都发生在弹靶接触的六边形单元内,其他单元内的混凝土都没有发生破坏;靶体背面混凝土的漏斗坑破坏也局限在弹靶接触的六边形单元内,其他六边形单元内的混凝土基本上没有发生破坏。而钢筋混凝土靶体内混凝土的破坏除了在弹靶接触的区域内有漏斗坑外,在整个靶体上都有多条放射性裂缝存在。因此有了六边形单元的阻隔作用,蜂窝结构靶体的混凝土破坏范围大大减小。
3. 结论
(1) 相对钢筋混凝土靶体,在侵彻蜂窝靶体过程中,弹体更易发生偏航现象,偏转角的大小与弹体速度、弹着点等有关。
(2) 六边形单元提高了其内部的混凝土抗压强度及变形能力,蜂窝结构靶体的混凝土破坏面积较钢筋混凝土靶体的混凝土破坏面积小。
(3) 蜂窝靶体由若干个六边形单元组成,同时由于六边形单元的阻隔作用,蜂窝结构靶体的破坏范围小于钢筋混凝土靶体的破坏范围。
-
-
[1] 周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展 [J]. 天然气工业, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02.ZHOU S H, WANG J, LIANG Y. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02. [2] 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.MENG X Y, CHEN M Y, GU A L, et al. China’s hydrogen development strategy in the context of double carbon targets [J]. Natural Gas Industry, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015. [3] TU H L. Hydrogen energy: a global trend and China’s strategy [J]. Engineering, 2021, 7(6): 703. DOI: 10.1016/j.eng.2021.04.006. [4] YANG Z H, WANG Z R, CAO X J, et al. Influences of concentration gradients and ignition positions on unconfined inhomogeneous hydrogen explosion [J]. International Journal of Hydrogen Energy, 2024, 50: 857–69. DOI: 10.1016/j.ijhydene.2023.07.209. [5] 刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势 [J]. 油气储运, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002.LlU C W, PEl Y B, HAN H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologie [J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002. [6] LIU Y F, ZHANG W X, ZHANG X, et al. Nanostructured light metal hydride: fabrication strategies and hydrogen storage performance [J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113560. DOI: 10.1016/j.rser.2023.113560. [7] CORGNALE C, HARDY B, MOTYKA T, et al. Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 821–833. DOI: 10.1016/j.rser.2014.07.049. [8] HUANG Z G, GUO Z P, CALKA A, et al. Noticeable improvement in the desorption temperature from graphite in rehydrogenated MgH2/graphite composite [J]. Materials Science and Engineering: A, 2007, 447(1/2): 180–185. DOI: 10.1016/j.msea.2006.11.074. [9] LIU L L, LI J, ZHANG L Y, et al. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant [J]. Journal of Hazardous Materials, 2018, 342: 477–481. DOI: 10.1016/j.jhazmat.2017.08.055. [10] MARKMAN E, LUZZATTO-SHUKRUN L, LEVY Y S, et al. Effect of additives on hydrogen release reactivity of magnesium hydride composites [J]. International Journal of Hydrogen Energy, 2022, 47(73): 31381–31394. DOI: 10.1016/j.ijhydene.2022.07.025. [11] SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review [J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121–1140. DOI: 10.1016/j.ijhydene.2006.11.022. [12] 赵金钢, 李玉艳, 刘大斌, 等. 氢化镁对金属混合物最小点火能的影响 [J]. 含能材料, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008.ZHAO J G, LI Y Y, LIU D B, et al. Effect of magnesium hydride on the minimum ignition energy of metal mixture [J]. Chinese Journal of Energetic Materials, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008. [13] TSAI Y T, HUANG G T, ZHAO J Q, et al. Dust cloud explosion characteristics and mechanisms in MgH2‐based hydrogen storage materials [J]. AIChE Journal, 2021, 67(8): e17302. DOI: 10.1002/aic.17302. [14] WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. DOI: 10.1016/j.dt.2020.06.011. [15] ZHANG Q W, CHENG Y F, ZHANG B B, et al. Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds [J]. Defence Technology, 2024, 31: 471–83. DOI: 10.1016/j.dt.2023.03.003. [16] 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methanedeflagration in ducts [D]. Chongqing: Chongqing University, 2017. [17] 徐在龙. 封闭空间中火焰加速产生压力波及火焰—压力波相互作用的研究 [D]. 天津: 天津大学, 2020.XU Z L. Fundamental study of flame acceleration generating pressure wave and flame-pressure wave interaction in confined space [D]. Tianjin: Tianjin University, 2020. [18] WEI H Q, XU Z L, ZHOU L, et al. Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames [J]. International Journal of Hydrogen Energy, 2017, 42(17): 12657–12668. DOI: 10.1016/j.ijhydene.2017.03.099. [19] 陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析 [J]. 中国安全科学学报, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812.CHEN G, ZHANG X L, XU S, et al. Statistical analysis on dust explosion accidents in China from 2005 to 2020 [J]. China Safety Science Journal, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812. [20] 王伟, 刘志云, 崔福庆, 等. 1981~2020年我国较大及以上危化品事故统计分析与对策研究 [J]. 应用化工, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001.WANG W, LIU Z Y, CUI F Q, et al. Statistical analysis and countermeasures of large and above chemical accidents in China during 1981–2020 [J]. Applied Chemical Industry, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001. [21] 鲁征, 傅贵, 薛忠智. 天津港“8·12”危险品仓库火灾爆炸事故行为原因研究 [J]. 灾害学, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036.LU Z, FU G, XUE Z Z. Research on behavioral causes of a fire and explosion accident of 8·12 in Tianjin port [J]. Journal of Catastrophology, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036. [22] 黄沿波, 刘铁梅. 化工园区安全管理技术策略 [J]. 灾害学, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031.HUANG Y B, LIU T M. Strategy on safety management technology of chemical industry park [J]. Journal of Catastrophology, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031. [23] XIONG X Y, GAO K, MU J, et al. Study on explosion characteristic parameters and induction mechanism of magnesium powder/hydrogen hybrids [J]. Fuel, 2022, 326: 125077. DOI: 10.1016/j.fuel.2022.125077. [24] CASHDOLLAR K L, ZLOCHOWER I A. Explosion temperatures and pressures of metals and other elemental dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 337–348. DOI: 10.1016/j.jlp.2007.04.018. [25] IMAMURA H, MASANARI K, KUSUHARA M, et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling [J]. Journal of Alloys and Compounds, 2005, 386(1/2): 211–216. DOI: 10.1016/j.jallcom.2004.04.145. 期刊类型引用(1)
1. 李根,卢芳云,李翔宇. 测量炸药爆炸威力的实验方法研究. 中国测试. 2020(09): 40-46 . 百度学术
其他类型引用(3)
-