Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

多孔钛合金夹芯层陶瓷/UHMWPE复合结构的抗侵彻性能

马铭辉 武一丁 王晓东 余毅磊 王伯通 高光发

张云峰, 罗兴柏, 刘国庆, 施冬梅, 张玉令, 甄建伟. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性[J]. 爆炸与冲击, 2020, 40(2): 023301. doi: 10.11883/bzycj-2019-0065
引用本文: 马铭辉, 武一丁, 王晓东, 余毅磊, 王伯通, 高光发. 多孔钛合金夹芯层陶瓷/UHMWPE复合结构的抗侵彻性能[J]. 爆炸与冲击, 2024, 44(4): 041001. doi: 10.11883/bzycj-2023-0375
ZHANG Yunfeng, LUO Xingbai, LIU Guoqing, SHI Dongmei, ZHANG Yuling, ZHEN Jianwei. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite rragment against RHA target[J]. Explosion And Shock Waves, 2020, 40(2): 023301. doi: 10.11883/bzycj-2019-0065
Citation: MA Minghui, WU Yiding, WANG Xiaodong, YU Yilei, WANG Botong, GAO Guangfa. Penetration resistance of ceramic/UHMWPE composite structures with porous titanium alloy sandwich layer[J]. Explosion And Shock Waves, 2024, 44(4): 041001. doi: 10.11883/bzycj-2023-0375

多孔钛合金夹芯层陶瓷/UHMWPE复合结构的抗侵彻性能

doi: 10.11883/bzycj-2023-0375
基金项目: 国家自然科学基金(U2341244, 12172179, 11772160)
详细信息
    作者简介:

    马铭辉(1996- ),男,博士研究生,maminghui@njust.edu.cn

    通讯作者:

    高光发(1980- ),男,博士,教授,博士生导师,gfgao@ustc.edu.cn

  • 中图分类号: O383

Penetration resistance of ceramic/UHMWPE composite structures with porous titanium alloy sandwich layer

  • 摘要: 陶瓷/纤维复合装甲的纤维背板由于其刚度较低,无法为陶瓷面板提供足够的支撑,削弱了陶瓷面板对弹丸的侵蚀作用。为了增强复合装甲的整体结构刚度,在陶瓷/纤维复合装甲中加入了金属夹芯层材料,通过试验和数值模拟研究了夹芯复合装甲对12.7 mm穿燃弹的抗弹性能。试验结果表明,穿燃弹弹芯表现出脆性断裂的失效模式,复合材料装甲表现出多种失效模式,包括夹芯层的花瓣形扩孔,UHMWPE (ultra-high molecular weight polyethylene)层压板的分层和凸起变形。建立了三维数值模型来分析整个弹道响应的演变,通过试验结果验证了模拟的准确性。模拟结果表明,12.7 mm穿燃弹的被甲会对陶瓷造成损伤,同时陶瓷会侵蚀弹芯的尖卵形头部,使弹芯头部变钝从而削弱弹芯对UHMWPE背板的侵彻能力。残余弹体的动能大部分由UHMWPE层吸收,UHMWPE层压板的失效模式会随着层数的增加由剪切失效转变为拉伸失效占主导地位。此外,作为夹芯层的多孔TC4板能够为陶瓷面板提供支撑,提高陶瓷面板的吸能效果以及弹体的侵蚀作用,并且12 mm孔径的TC4夹芯层能够提供更大的刚度支撑,使整体复合结构的吸能效率提升10%。
  • 多功能含能结构材料(multifunctional energetic structural material, MESM)是综合利用化学能和动能以提高战斗部毁伤效能的新型功能材料[1]。不同于传统惰性破片单一的动能杀伤作用,当MESM破片以一定速度撞击靶板时,会激发剧烈的爆炸/燃烧反应,破片贯穿靶板后,通过动能和化学能的联合作用,实现对靶后目标产生更大的杀伤破坏[2]

    MESM对特定目标的毁伤是现今较活跃的领域之一,研究主要集中在其释能特性和侵彻毁伤效应上。Zhang等[3-4]和Xiong等[5-6]系统研究了Al/Ni基MESM的冲击释能特性及反应机理,并推导了温度控制冲击诱发化学反应的热化学模型[4, 6],结果表明MESM的释能反应特性与破片冲击引发的材料温升有关,反应规律符合Avrami-Erofeev方程。Wang等[7]和Luo等[8]等分别研究了高聚物、W/ZrMESM的冲击释能特性。Xu等[2,9]研究了PTFE/Al/W破片对装甲铝板的侵彻毁伤效应,通过弹道试验结果拟合了PTFE/Al/W破片对装甲铝板的极限穿透速度计算公式,并研究了破片对双层铝板的结构破坏作用。

    W/ZrNiAlCu亚稳态合金复合材料是新一代MESM,具有较强的侵彻能力及释能特性,但其对轧制均质装甲(RHA)靶板的侵彻释能特性研究仍属空白。基于此,本文通过弹道枪侵彻实验和高速摄影,测量破片对RHA靶板的撞击速度和靶板贯穿形成的冲塞体速度,记录破片的侵彻释能过程,研究W/ZrNiAlCu亚稳态合金复合材料破片的侵彻释能特性,为该亚稳态合金复合材料的进一步研究和应用提供理论和实验依据。

    实验试样为W/ZrNiAlCu亚稳态合金复合材料破片,材料通过液态真空压力浸渗工艺制备:将熔体ZrNiAlCu亚稳态合金通过高纯氩气吹入由W颗粒粉末烧结而成的基体中,保压0.5 h保证熔体完全浸渗W基体孔隙,随后放入饱和食盐水中淬火,制备出W/ZrNiAlCu亚稳态合金复合材料。通过机加工,得到边长8 mm的立方体破片,破片密度为12.9 g/cm3

    侵彻实验的实验布置如图1所示。破片及弹托由14.5 mm弹道枪发射,弹托刻有凹槽,保证出枪口后弹托、破片分离;10.5 mm厚RHA靶板(GY4)中点位于射击线上,距弹道枪口5 m,一组测速靶置于RHA靶板前方,距靶板1 m,用以测量破片初速,另一组测速靶置于RHA靶板后方,距靶板1 m,用以测量靶板剪切形成的冲塞体速度,每组测速靶由相距0.5 m的两块断通靶纸组成,断通靶纸与计时器相连接;高速摄影机置于靶板侧方,用以记录W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶板的侵彻释能过程。

    图  1  侵彻实验装置布置
    Figure  1.  Layout of penetration experimental setup

    图2为4个典型撞击速度vi下W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶板的侵彻释能过程,可以看出,破片撞击速度对破片侵彻过程中的释能现象有较大影响。图2(a)中,由于撞击速度较低,破片未贯穿靶板。破片撞击靶板引发了材料的释能反应,靶板前方可看到2束对称的火光并逐渐向外扩散。图2(b)2(d)中,随着撞击速度增加,靶板前方光束变长,火光范围增大、亮度变高。图2(c)图2(d)中均可观察到4道光束。当立方体破片撞击靶板时,破片的棱角处应力集中导致材料破碎并向外飞散,因此侧向观察可以看到2~4束对称的火光,火光由材料碎片燃烧产生,并伴随破片飞散而逐渐扩散。当破片撞击速度增大时,撞击能增加,碎片数量增多、初始动能变大、材料温度更高、释能反应更充分,因此靶板前方火光范围增大、亮度变高。

    图  2  不同撞击速度下W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶板的侵彻释能过程
    Figure  2.  Penetration and energy release processes of W/ZrNiAlCu metastable reactive alloy composite fragments against RHA targets at different impact velocities

    当撞击速度vi=1 067或1 259 m/s时(图2(b)2(c)),靶板后方呈现一道圆柱型光束,光束顶端可以看到靶板剪切破坏形成的冲塞体。在撞击并贯穿靶板过程中破片破碎,部分碎片穿过靶板并继续飞行,破片碎片由于初始速度、质量、形状的差异,形成碎片云并呈圆柱状分布。当vi=1 508 m/s时(图2(d)),靶板后方圆柱型光束的末端出现椭球状光亮,并在圆柱型光柱消散后继续燃烧(t=3.75 ms)。当破片撞击速度较大时,部分破片碎片温度较高,贯穿靶板并与空气混合后发生燃烧,形成椭球状碎片云,该部分破片温度高,反应充分,燃烧时间较长,在靶后方形成了持续一定时间的椭球状光亮。在一定撞击速度下,W/ZrNiAlCu亚稳态合金复合材料破片既可有效贯穿10.5 mm厚的RHA靶板,又可在靶后发生明显的燃烧反应,是一种具有较强侵彻能力的多功能含能结构材料。需要注意的是,由于侵彻过程中破片的破碎不可忽略,不能使用传统惰性破片侵彻公式解释W/ZrNiAlCu亚稳态合金复合材料破片的侵彻规律。

    表1为不同撞击速度vi下W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶板的侵彻结果,m为破片质量,vp为测得的冲塞体速度,p为根据连续介质力学公式计算得到的破片理论冲击压力[10]。可以看到,vi=973 m/s时:破片贯穿靶板;而vi=995 m/s时,破片未贯穿靶板。考虑到破片质量差别及弹道极限速度vbl附近数据量较小,可以认为W/ZrNiAlCu亚稳态合金复合材料破片对10.5 mm厚RHA靶板的弹道极限速度vbl处于810~1 067 m/s范围内。

    表  1  破片侵彻实验结果
    Table  1.  Experimental results of fragments penetration
    编号m/gvi/(m·s−1)vp/(m·s−1)p/GPa是否穿透
    1#6.65 72616.46
    2#6.54 81018.63
    3#6.39 99523.62
    4#6.68 973 3423.01
    5#6.801 06713725.63
    6#6.721 14417627.83
    7#6.371 15913128.26
    8#6.651 24019530.64
    9#6.511 29531732.28
    10#6.561 35939734.21
    11#6.681 50849738.85
    下载: 导出CSV 
    | 显示表格

    破片侵彻靶板过程中加速度历程较为复杂,因此采用质量守恒和能量守恒为基础的整体法求解弹道极限速度,做以下三点假设:

    (1)破片首先与自由冲塞体发生塑性碰撞,此过程不考虑靶板的绝热剪切效应[11]

    (2)破片撞击靶板后部分破碎,靶前飞散碎片不参与侵彻过程;

    (3)冲塞体速度vp约为靶后碎片飞出靶板瞬间统计平均速度vr的1.35倍[11]

    破片贯穿靶板前后的能量守恒方程为:

    12mv2i=12mf(mm+mpvi)2+12mbv2r+12mpv2p+Efn+Wp (1)

    式中:mf为靶板前方飞溅的破片碎片质量之和,mb为破片贯穿靶板后残余质量,mp为靶板冲塞体质量,Efn为破片与靶板塑性碰撞损失能量,Wp为冲塞绝热剪切耗能。弹靶组合确定时,mf仅与撞击速度有关,采用二次多项式的形式拟合:

    mf=m[a(vivbl)2+b(vivbl)+c] (2)

    式中:abc为待定系数,vbl为不考虑质量损失时的弹道极限速度,mf满足质量守恒m=mf+mb。式(1)中,EfnWp的表达式分别为[11]

    Efn=mpm+mp12mv2i (3)
    Wp=4dh2Y3 (4)

    式中:d为破片边长;h为靶板厚度;Y=1.2 GPa,为靶板失效应力。由弹道极限速度的定义,当vi= vbl时,vp=vr=0,令a=b=c=0,将式(3)和(4)代入式(1)得vbl*=937.8 m/s;将表1实验数据代入式(1)拟合得到参数a= −2.02, b= 6.47, c=−4.41,解式(1)得vbl=987.1 m/s,在实验所确定的弹道极限速度范围内。

    图3为W/ZrNiAlCu亚稳态合金复合材料破片侵彻10.5 mm厚RHA靶板的vi-vp曲线,其中蓝色实线为考虑破片质量损失所得曲线,红色实线为未考虑破片质量损失所得曲线,星型为实验数据,可以看到,vpvi正相关,蓝色实线始终位于红色实线下方。破片侵彻能力与其初始动能有关,故破片撞击速度vi越大,冲塞体速度vp越大,侵彻能力增强。破片在侵彻靶板过程中的质量损失将导致动能降低,进而降低破片的侵彻能力,因此蓝色实线位于红色实线下方,理论弹道极限速度vblvbl,破片质量损失对侵彻能力有较大影响。图上星状点为实验数据,可以看到,理论计算结果与实验数据吻合较好,表明所做假设合理,式(1)可以较好地解释包含质量损失的破片对中厚靶板的侵彻规律。

    图  3  vi-vp关系曲线
    Figure  3.  Curve of vi-vp relationship

    由Grünesien物态方程和Rankin-Hugoniot能量方程得到固体p-V形式的物态方程[6]

    p(V)=Vγ(V)pc(V)Ec(V)Vγ(V)12(V0V) (5)

    式中:p为材料压力,V为比容,γ为Grünesien系数,pcEc分别为材料冷压和冷能。通过Meyer势,金属材料的冷压和冷能可以表示为材料常数Q-q的形式[6]

    Ec(δ)=3Qρ0K{1qexp[q(1δ1/3)]δ1/31q+1} (6)
    pc(δ)=Qδ2/3{exp[q(1δ1/3)]δ2/3} (7)

    式中:δ=ρ/ρ0K=V0K/V,为材料的相对于0 K时密度的压缩度,ρ0KV0K为0 K时的密度和比容。

    Dugdale -MacDonald关系式的Q-q形式为[6]

    γ(V)=16q2δ1/3exp[q(1δ1/3)]6δqexp[q(1δ1/3)]2δ (8)

    采用胡金彪等给出的解析法可以求得材料常数Qq[6]

    s[1+(s218γ20Ks1)αVT0]=112q2+6q18q2 (9)
    {C0[1+(2sγ20K41)αVT0]}2=Q(q2)3ρ0K (10)

    式中:C0s为Hugoniot参数,其中C0理论上等于材料的零压体积声速;γ0K为0 K时的Grünesien系数;αV为材料的体积膨胀系数;T0为起始温度,即实验室室温,取298 K。

    Boslough根据固态材料绝热线和等熵线的关系,假定材料等容比热为常数,得到冲击波温度表达式[12]

    TH=T0exp(VHV0VγdV)+VγpHpSCV (11)

    式中:TH为击波温度,pH为击波压力,V0VH分别为初态、击波压缩状态下的比容,CV为材料的等容比热,pS为与冲击绝热线同一起始状态出发的等熵线压力,其解析式为[12]

    pS(η)=ρ0C20exp(γ0η)η0(1+(sγ0))x(1sx)3exp(γ0x)dx (12)

    式中:η=1V/V0为压缩度,x为压缩度的积分变量,ρ0为起始状态下材料密度,γ0为初始Grünesien系数。将式(5)、式(11)联立,即可得到击波压力与击波温度的关系。

    假设含能结构材料的化学反应过程仅受击波温度控制,研究表明,含能结构材料在高升温速率下的固态反应动力学满足n维Avrami-Erofeev方程,经过整理,Avrami-Erofeev方程可以表示为击波温度对反应效率一次微分的形式[6]

    dTdy=RuT2Ea[12ynln(1y)+n1n(1y)[ln(1y)]] (13)

    式中:y为反应效率,Ea为表观活化能,Ru为理想气体常数,n为与边界条件和反应机理有关的系数。

    表2为计算所需W/ZrNiAlCu亚稳态合金复合材料参数,图4为破片冲击压力与反应效率关系的理论曲线,可以看到,在40 GPa冲击压力范围内,材料并未达到完全反应,当p=40 GPa,材料反应效率y=0.541;材料反应效率与冲击压力正相关,因此,随着冲击速度增加,破片冲击释能所产生的火光范围、火光亮度增大,与实验现象相符合。

    表  2  W/ZrNiAlCu亚稳态合金复合材料参数[13]
    Table  2.  Parameters of W/ZrNiAlCu metastable reactive alloy composite
    材料C0/(m∙s−1)sγ0KαV/(10−5·K−1)CV/(J·g−1·K−1)Ea/(kJ·mol−1)n
    W/ZrNiAlCu3 4171.7321.6291.5590.182459.250.347
    下载: 导出CSV 
    | 显示表格
    图  4  冲击压力与反应效率的理论曲线
    Figure  4.  Theoretical curve of reaction efficiencyversus shock pressure

    (1)W/ZrNiAlCu亚稳态合金复合材料破片可以贯穿10.5 mm厚的RHA靶板,破片撞击、贯穿靶板过程中导致材料破碎并激发燃烧反应,靶前、靶后均可观察到大范围火光;随着撞击速度增加,火光范围增大,亮度提高,燃烧反应时间变长。

    (2)推导了W/ZrNiAlCu亚稳态合金复合材料破片侵彻规律方程,得到了破片侵彻10.5 mm厚RHA靶板的理论弹道极限速度vbl=987.1 m/s,理论计算结果与实验数据吻合较好;破片侵彻过程中的质量损失对其侵彻能力有较大影响,在相同撞击速度下,W/ZrNiAlCu亚稳态合金复合材料破片侵彻形成冲塞体速度小于不考虑质量损失的理想情况下冲塞体速度。

    (3)由材料的Grunesien物态方程和Avrami-Erofeev方程得到材料反应效率y与冲击压力p的理论关系,在15~40 GPa范围内,材料反应效率随着冲击压力的增加而增加,当p=40 GPa时,y=0.541,因此实验过程中材料反应并不完全,出现随着撞击速度增加,火光范围增大、亮度提高的现象。

  • 图  1  弹道试验装置及靶板结构示意图

    Figure  1.  Schematic diagrams of ballistic testing device and target structure

    图  2  侵彻仿真有限元模型

    Figure  2.  Finite element model for penetration simulation

    图  3  回收后的残余弹体

    Figure  3.  Recovered projectiles

    图  4  试验1~2和4的残余弹体断面SEM图像

    Figure  4.  SEM images of fracture surfaces of residual projectiles in tests 1, 2, and 4

    图  5  试验1陶瓷的破坏形貌

    Figure  5.  Ceramic failure morphology in test 1

    图  6  试验7双层结构中陶瓷的破坏形貌

    Figure  6.  Ceramic failure morphology in double-layer structure in test 7

    图  7  试验1多孔TC4夹芯层的破坏形貌

    Figure  7.  Failure morphology of porous TC4 sandwich layer in test 1

    图  8  UHMWPE背板破坏形貌

    Figure  8.  Failure morphologies of UHMWPE back plate

    图  9  试验1复合装甲仿真失效形貌的模拟结果

    Figure  9.  The deformation of the composite armor in test 1

    图  10  UHMWPE的失效形式的仿真和试验结果对比图

    Figure  10.  Comparison between simulation and experimental results of the failure mode of UHMWPE

    图  11  被甲侵彻行为

    Figure  11.  Penetration behavior by jacket

    图  12  弹丸穿透TC4板后残余弹芯形貌

    Figure  12.  Residual core after the penetration of the TC4

    图  13  内聚力单元层的失效模式

    Figure  13.  Failure modes of cohesive layers

    图  14  不同组件的能量吸收情况

    Figure  14.  Energy absorption of different components

    图  15  双层装甲结构与三层装甲结构能量吸收对比

    Figure  15.  Comparison of energy absorption between double-layer and three-layer armor structures

    图  16  双层装甲结构和三层装甲结构中弹头侵蚀对比

    Figure  16.  Comparison of projectile erosion in double-layer and three-layer armor structures

    图  17  不同孔径TC4板的陶瓷层和UHMWPE层能量吸收对比

    Figure  17.  Comparison of energy absorption between ceramic and UHMWPE under TC4 plates with different apertures

    图  18  孔径9 mm的TC4板刚度测试变形

    Figure  18.  Deformation during stiffness testing of 9-mm-aperture TC4 board

    表  1  试验条件

    Table  1.   Test conditions

    试验 复合靶板配置厚度/mm 弹丸速度/(m·s−1) 面密度/(kg·m−2)
    B4C面板 TC4夹芯层 UHMWPE背板
    1 9.0 2.0 10.0 501.4 37.7
    2 9.0 2.0 10.0 475.2
    3 10.0 1.0 10.0 507.5 37.5
    4 10.0 1.0 10.0 468.9
    5 10.0 1.5 10.0 487.0 38.8
    6 10.0 1.5 10.0 486.4
    7 10.0 10.0 487.2 34.8
    下载: 导出CSV

    表  2  碳化硼陶瓷JH-2模型参数[20]

    Table  2.   Material parameters for B4C used in the JH-2 model[20]

    ρ0/(gcm3) G/GPa A B C/s−1 M N σfmax
    2.51 197 0.927 0.7 0.005 0.85 0.67 0.2
    HEL/GPa T/MPa β K1/GPa K2/GPa K3/GPa D1 D2
    19 260 1 233 −593 2800 0.001 0.5
    下载: 导出CSV

    表  3  UHMWPE材料的Hashin损伤模型参数[15]

    Table  3.   Hashin damage model parameters of the UHMWPE material[15]

    ρ0/(gcm3) E1/GPa E2/GPa E3/GPa ν12 ν13 ν13 G12/GPa
    0.97 30.7 30.7 1.97 0.008 0.044 0.044 1.97
    G13/GPa G23/GPa Xt/GPa Xc/GPa S12/GPa S13/GPa S23/GPa
    0.67 0.67 3.0 3.0 0.95 0.95 0.95
    下载: 导出CSV

    表  4  弹丸材料和TC4板的JC材料模型参数[24-25]

    Table  4.   Material parameters for T12A, jacket and TC4 used in the Johnson-Cook model[24-25]

    材料 ρ/(g·cm−3 G0/GPa A/MPa B/MPa n C m
    弹芯(T12A) 7.80 82.0 1539 477 0.18 0.012 1.00
    被甲(F11) 7.92 78.0 300 275 0.17 0.022 1.00
    TC4 4.45 41.0 1100 845 0.58 0.014 0.753
    材料 D1 D2 D3 D4 D5
    弹芯(T12A) 0.15 0.72 1.66 0.43 0.00
    被甲(F11) 0.50 0.00 0.00 0.00 0.00
    TC4 0.09 0.27 0.48 0.014 3.8
    下载: 导出CSV

    表  5  陶瓷锥顶部和底部直径测量值

    Table  5.   Measured values of the top and bottom diameters of ceramic cones

    试验 试验靶板配置厚度/mm 弹丸速度/(m·s−1) 陶瓷锥顶部直径D1/mm 陶瓷锥底部直径D2/mm
    B4C TC4
    1 9.0 2.0 501.4 34.61 108.97
    2 9.0 2.0 475.2 29.34 100.08
    3 10.0 1.0 507.5 44.86 130.59
    4 10.0 1.0 468.9 30.06 102.85
    5 10.0 1.5 487.0 32.42 117.58
    6 10.0 1.5 486.4 30.36 115.32
    7 10.0 487.2 30.20 100.95
    下载: 导出CSV
  • [1] MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure: Part 2 [J]. Ceramics International, 2010, 36(7): 2117–2127. DOI: 10.1016/j.ceramint.2010.05.022.
    [2] LUO D J, WANG Y W, WANG F C, et al. The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile [J]. Materials and Design, 2020, 191: 108659. DOI: 10.1016/j.matdes.2020.108659.
    [3] NAGLIERI V, GLUDOVATZ B, TOMSIA A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase [J]. Acta Materialia, 2015, 98: 141–151. DOI: 10.1016/j.actamat.2015.07.022.
    [4] LI J Z, ZHANG L S, HUANG F L. Experiments and simulations of tungsten alloy rods penetrating into alumina ceramic/603 armor steel composite targets [J]. International Journal of Impact Engineering, 2017, 101: 1–8. DOI: 10.1016/j.ijimpeng.2016.09.009.
    [5] 余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响 [J]. 北京理工大学学报, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.

    YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.
    [6] ZAERA R, SÁNCHEZ-SÁEZ S, PÉREZ-CASTELLANOS J L, et al. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(8): 823–833. DOI: 10.1016/S1359-835X(00)00027-0.
    [7] NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite [J]. International Journal of Impact Engineering, 2015, 75: 174–183. DOI: 10.1016/j.ijimpeng.2014.07.008.
    [8] CAI S P, LIU J, ZHANG P, et al. Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading [J]. International Journal of Impact Engineering, 2020, 138: 103475. DOI: 10.1016/j.ijimpeng.2019.103475.
    [9] CAI S P, LIU J, ZHANG P, et al. Experimental study on failure mechanisms of sandwich panels with multi-layered aluminum foam/UHMWPE laminate core under combined blast and fragments loading [J]. Thin-Walled Structures, 2020, 159: 107227. DOI: 10.1016/j.tws.2020.107227.
    [10] SHEN Z W, HU D A, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet [J]. Composite Structures, 2019, 213: 209–219. DOI: 10.1016/j.compstruct.2019.01.078.
    [11] 武一丁, 王晓东, 余毅磊, 等. 纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响 [J]. 爆炸与冲击, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.

    WU Y D, WANG X D, YU Y L, et al. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor [J]. Explosion and Shock Waves, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.
    [12] DE OLIVEIRA BRAGA F, MILANEZI T L, MONTEIRO S N, et al. Ballistic comparison between epoxy-ramie and epoxy-aramid composites in Multilayered Armor Systems [J]. Journal of Materials Research and Technology, 2018, 7(4): 541–549. DOI: 10.1016/j.jmrt.2018.06.018.
    [13] DE OLIVEIRA BRAGA F, BOLZAN L T, RAMOS F J H T V, et al. Ballistic efficiency of multilayered armor systems with sisal fiber polyester composites [J]. Materials Research, 2018, 20(S2): 767–774. DOI: 10.1590/1980-5373-MR-2017-1002.
    [14] KARTIKEYA K, CHOUHAN H, RAM K, et al. Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles [J]. International Journal of Impact Engineering, 2022, 164: 104211. DOI: 10.1016/j.ijimpeng.2022.104211.
    [15] WU K K, CHEN Y L, YEH J N, et al. Ballistic impact performance of SiC ceramic-dyneema fiber composite materials [J]. Advances in Materials Science and Engineering, 2020, 2020: 9457489. DOI: 10.1155/2020/9457489.
    [16] NGUYEN L H, LÄSSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact [J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 224–235. DOI: 10.1016/j.compositesa.2016.01.014.
    [17] HAZZARD M K, TRASK R S, HEISSERER U, et al. Finite element modelling of Dyneema® composites: from quasi-static rates to ballistic impact [J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 31–45. DOI: 10.1016/j.compositesa.2018.09.005.
    [18] NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: experimental and numerical study [J]. International Journal of Impact Engineering, 2019, 132: 103307. DOI: 10.1016/j.ijimpeng.2019.05.021.
    [19] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
    [20] MA Y Y, WANG J T, ZHAO G Z, et al. New insights into the damage assessment and energy dissipation weight mechanisms of ceramic/fiber laminated composites under ballistic impact [J]. Ceramics International, 2023, 43(13): 21966–21977. DOI: 10.1016/j.ceramint.2023.04.021.
    [21] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1981, 48(4): 846–852. DOI: 10.1115/1.3157744.
    [22] TAN L B, TSE K M, LEE H P, et al. Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: experiments and finite element simulations [J]. International Journal of Impact Engineering, 2012, 50: 99–112. DOI: 10.1016/j.ijimpeng.2012.06.003.
    [23] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [24] JIANG Y, QIAN K, ZHANG Y L, et al. Experimental characterisation and numerical simulation of ballistic penetration of columnar ceramic/fiber laminate composite armor [J]. Materials and Design, 2022, 224: 111394. DOI: 10.1016/j.matdes.2022.111394.
    [25] XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile [J]. Ceramics International, 2022, 48(16): 24079–24090. DOI: 10.1016/j.ceramint.2022.05.088.
    [26] STRASSBURGER E, HUNZINGER M, PATEL P, et al. Analysis of the fragmentation of AlON and spinel under ballistic impact [J]. Journal of Applied Mechanics, 2013, 80(3): 031807. DOI: 10.1115/1.4023573.
    [27] GAO Y J, FENG X Y, LIU J X, et al. Design and ballistic penetration of “SiC/Ti6Al4V/UHMWPE” composite armor [J]. IOP Conference Series:Materials Science and Engineering, 2019, 563(4): 042043. DOI: 10.1088/1757-899X/563/4/042043.
    [28] PHOENIX S L, PORWAL P K. A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems [J]. International Journal of Solids and Structures, 2003, 40(24): 6723–6765. DOI: 10.1016/S0020-7683(03)00329-9.
    [29] GUO G D, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles [J]. International Journal of Impact Engineering, 2021, 157: 104000. DOI: 10.1016/j.ijimpeng.2021.104000.
  • 期刊类型引用(8)

    1. 贾杰,智小琦,郝春杰,李劲,郭璐,柳星河. Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究. 高压物理学报. 2024(02): 130-139 . 百度学术
    2. 杨林,于述贤,范群波. Zr_(77.1)Cu_(13)Ni_(9.9)非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究. 北京理工大学学报. 2023(04): 417-428 . 百度学术
    3. 熊玮,张先锋,李逸,谈梦婷,刘闯,侯先苇. 活性材料冲击压缩及反应行为模拟方法研究进展. 北京理工大学学报. 2023(10): 995-1015 . 百度学术
    4. 芦永进,梁增友,邓德志,朱聪. 铜基非晶合金双层药型罩射流形成及侵彻性能. 火炮发射与控制学报. 2022(01): 14-20+28 . 百度学术
    5. 郭志平,王飞,姜波,张杰,程波,王传婷,何勇. ZrCuAlNi合金的Taylor撞击断裂行为研究. 兵器装备工程学报. 2022(05): 185-190 . 百度学术
    6. 尚春明,施冬梅,张云峰,徐雪涛. Zr基非晶合金毁伤研究进展. 兵器装备工程学报. 2020(07): 182-186 . 百度学术
    7. 陈海华,张先锋,熊玮,刘闯,魏海洋,汪海英,戴兰宏. WFeNiMo高熵合金动态力学行为及侵彻性能研究. 力学学报. 2020(05): 1443-1453 . 百度学术
    8. 何丽灵,张方举,颜怡霞,谢若泽,徐艾民,周燕良. Ti-6Al-4V弹体破坏模式对冲击反应的影响研究. 爆炸与冲击. 2020(12): 58-69 . 本站查看

    其他类型引用(1)

  • 加载中
推荐阅读
钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能
章浪 等, 爆炸与冲击, 2025
基于战斗部侵彻动爆一体化效应的遮弹层设计
吴昊 等, 爆炸与冲击, 2025
铝球微气囊超结构whipple屏抗超高速冲击性能物质点法分析
毛志超 等, 爆炸与冲击, 2025
弹体对超高性能混凝土侵彻深度的研究
聂晓东 等, 爆炸与冲击, 2024
椭圆截面战斗部爆炸驱动破片作用过程的数值模拟
邓宇轩 等, 高压物理学报, 2022
约束对陶瓷/钢复合靶板抗侵彻性能的影响
夏习持 等, 高压物理学报, 2023
Al/cfrp/混合蜂窝铝复合夹芯多层结构抗侵彻数值模拟
纪垚 等, 高压物理学报, 2023
The role of small molecules containing fluorine atoms in medicine and imaging applications
Henary, Emily et al., PHARMACEUTICALS, 2024
Transient rock breaking characteristics by successive impact of shield disc cutters under confining pressure conditions
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Investigation on dynamic deformation and damage of steel ribbon wound vessel for hydrogen storage under fragment impact loading
JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME
Powered by
图(18) / 表(5)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  198
  • PDF下载量:  254
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-10-16
  • 修回日期:  2024-01-06
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2024-04-07

目录

/

返回文章
返回