Investigation on geometric parameters effect and blast resistance of high-strength steel plates under near-field explosions
-
摘要: 为研究近爆载荷作用下高强钢板的抗爆性能,首先利用ANSYS/LS-DYNA软件开展了高强钢材料的SHPB冲击试验模拟,标定了表征高强钢动态本构的Johnson-Cook模型参数;基于该参数开展了84组近爆条件下高强钢板的爆炸模拟,系统分析了爆炸冲击波与钢板的相互作用过程,阐明了钢板的宽度及厚度等几何参数对其变形特征与破坏模式的影响规律。此外,通过汇总分析数值模拟结果,进一步提供了近爆作用下高强钢板最大变形位移的预测模型。研究表明:Johnson-Cook模型能有效模拟高强钢在高应变率下的力学行为;在冲击波传播方面,高强钢板厚度的增加会削弱冲击波穿透钢板后的影响范围;针对不同几何参数的高强钢板,近距离爆炸荷载会造成花瓣形破口、小破口以及大变形3种毁伤模式,且钢板厚度是决定其破坏模式的重要因素;在大变形毁伤模式下,钢板厚度的增加或边长的减小会提高其抗爆能力,宽厚比与钢板抗爆性能呈正相关。
-
关键词:
- 高强钢板 /
- Johnson-Cook模型 /
- 近距爆炸荷载 /
- 几何参数
Abstract: High-strength steel has excellent mechanical properties, which has been utilized in the fields of explosion and impact. In order to study the blast resistance of high-strength steel plates, ANSYS/LS-DYNA software was first used to simulate the impact test on high-strength steel materials. By comparing with experimental results, the Johnson-Cook model parameters characterizing the dynamic constitutive behavior of high-strength steel are determined. Based on the above model parameters, the explosion simulation of high-strength steel plates under near-field explosions is further carried out. The interaction process between the explosion shock wave and the steel plate is systematically analyzed, and the size effects of the steel plate on its deformation characteristics and failure mode are explained. The results show that the Johnson-Cook model can effectively simulate the mechanical behavior of S690 high-strength steel at high strain rates. High-strength steel plates have a weakening effect on the propagation of shock waves. With the increase of steel plate thickness, the propagation range of shock wave through steel plate decreases gradually. For high-strength steel plates of different geometric dimensions, near-field explosions will cause three damage modes: petal-shaped fracture, small fracture and large deformation. It is found that the thickness is the decisive factor to determine the failure mode of steel plates under near-field explosions. For high-strength steel plates with large deformation, the increase of thickness and decrease of width will improve the ability of resistance to near-field explosions. In addition, there is a positive correlation between the ability of shock resistance of the high-strength steel plate and the width-thickness ratio. When the proportional distance is 0.13, a model can be provided to predict the maximum displacement range of the high-strength steel plate according to the steel plate size. The above conclusions can provide some guiding significance for the optimal design and engineering application of high-strength steel structures. -
双层环肋圆柱壳作为一种典型结构,在潜艇中被广泛应用。由于作业环境恶劣,一旦发生撞击事故,会造成重大损失[1]。针对潜艇受到碰撞或潜艇搁浅的问题,梅志远等[2-3]、朱新阳等[4]对潜艇典型结构受撞损伤特征开展了数值模拟和模型试验研究。关于环肋圆柱壳结构撞击问题,Y.W.Kim等[5]利用能量法计算了环肋圆柱壳在阶跃冲击作用下的动态响应;孙清磊等[6]考虑静水压作用,对环肋圆柱壳受不同形状撞击体的撞击过程进行了数值模拟,探讨了不同撞头形状对结构变形吸能及碰撞力的影响规律。潜艇受撞击与导弹穿甲或侵彻问题不同,后者是金属在高速冲击和冲击产生高温的联合作用下瞬时被击穿形成破口的过程,破口周围的结构几乎不产生变形,穿甲机理包含力学和热力学作用[7]。而前者的撞击速度较低,撞击过程中热力学作用微小,可以忽略,且结构的变形范围不仅局限于接触区。目前,对圆柱壳受撞问题的研究,撞击物多为单一体,而实际中常会遇到多个物体同时或连续撞击的案例,而该类问题的研究却少见报道。本文中拟针对双层环肋圆柱壳受多物体撞击问题进行数值模拟和模型试验,对多物体撞击下的壳体结构损伤机理和典型特征开展研究,以期为相关工程设计提供参考。
1. 数值模拟
1.1 数值模型
选取双层环肋圆柱壳受撞一侧的半圆结构作为研究对象,由内、外层环肋圆柱壳通过实肋板连接而成。内外壳结构的特征参数如表 1所示,其中R为壳体半径,t为壳体板厚,L为壳体上环肋骨间距,F为环肋骨横剖面积,下标1、2分别代表外壳和内壳;撞击物为5只相同的实心钢球,半径为150 mm,每只钢球的质量为111 kg。
表 1 模型结构特征参数Table 1. Parameters of the model's structural characteristicsR1/t1 L1/√R1t1 F1/L1t1 R2/t2 L2/√R2t2 F2/L2t2 363.3 4.2 0.25 153.3 1.62 0.56 建模前首先对模型网格尺度对计算结果的影响进行分析,以单个物体(钢球)撞击双层壳体的环肋外壳为例,采用4种不同尺度的网格建立模型。从计算得到的撞击力和壳体变形能对比曲线,如图 1所示。从图中可以看出,模型网格特征长度为20和12 mm的计算结果基本吻合,表明前者能满足计算结果的稳定。根据结构受撞损伤的局部特性[8-9],考虑计算效率,建模时在壳体受撞及附近区域采用特征长度为20 mm的网格,远离受撞区采用较粗网格。
采用MSC.Patran[10]建立的双层环肋半圆柱壳结构及撞击物(钢球)的数值模型如图 2所示,图中还给出了钢球的分布。模型中所有构件均采用壳单元模拟,单元数为50 388,节点数为50 479。通过在撞击物上施加11.71 m/s的初始速度来模拟5只钢球从距离圆柱壳顶端7 m的高度同时自由坠落撞击壳体,同时考虑撞击过程中重力加速度以及摩擦作用的影响,动、静摩擦力因数都取0.1。
为了与模型试验相对应,双层环肋半圆柱壳结构的材料采用普通船用Q235钢,计算时考虑材料的应变率敏感性,用弹塑性材料来模拟,相关材料参数如下:材料密度, 7 850 kg/m3; 屈服应力, 290 MPa; 弹性模量, 206 GPa; 泊松比, 0.3;最大塑性失效应变, 0.386;应变率敏感系数D=40.4, q=5[11]。实心钢球相对于壳体结构的刚度较大,变形可忽略不计,因此采用刚体材料来模拟。
1.2 数值模拟结果及损伤机理分析
采用MSC.Dytran的主从面自适应接触算法对壳体受撞损伤过程进行计算,并用MSC.Patran对计算结果进行后处理,对结构的动态响应过程进行分析。
1.2.1 结构损伤变形
图 3~4所示分别为钢球达到最大撞深时壳体上产生的等效应力和损伤变形分布,可以看出,外壳上5个撞击点形成的网状面内的壳板多处产生屈服,损伤变形主要以受撞点处的凹陷为主,此外,受撞点之间的壳板变形也较明显。远离受撞区的壳板等效应力和结构变形都很小。中间钢球造成的壳体损伤变形最大,最大撞击深度达到了122 mm,表明相同撞击条件下,沿圆柱壳板径向撞击造成的壳体损伤最严重。根据受撞壳体结构的特征参数可以推断,达到最大撞深时外壳板将会与内壳上的环向肋骨产生接触。
图 5所示为钢球达到最大撞深时受撞壳体内壳的等效应力分布,可以看出,内壳上产生的塑性变形区较小,主要集中在与外壳板发生接触区以及与实肋板相连的环向肋骨上,撞击造成的内壳变形很小,表明在受撞环境下双层环肋圆柱壳的外壳能够对内壳起到很好的防护作用。
1.2.2 撞击力变化
图 6所示为5只钢球产生的撞击力时程曲线,可以看出,撞击力曲线的非线性现象十分明显,0号球的撞击力峰值要大于其余4只球,表明相同条件下沿圆柱壳板径向撞击形成的撞击力最大。撞击位置相似的钢球产生的撞击力基本相同。
0号球的撞击力曲线出现了2个明显的峰值,从撞击过程的动态模拟中观察分析,第1个峰值是由于0号球位于圆柱壳弧顶端,5只钢球同一平面同时落下时,0号球首先与圆柱壳接触,撞击力随着接触面的增加而增加,随后其余4只球与圆柱壳接触,它们的撞击造成了圆柱壳的凹陷,使得0号球与撞击位置的壳板接触面减小,因此会出现撞击力的卸载;此时0号球仍然具有撞击速度,随着接触的继续增加,撞击力继续增加,直至0号球的撞击速度减为零,撞击力达到最大值,出现第2个峰值。从图中还可以看出,其余4只钢球的撞击力曲线在卸载过程中也受到了0号球撞击产生的影响,表明多物体撞击过程中的撞击力会相互影响,产生耦合现象,这也是其区别于单物体撞击的显著特征。
1.2.3 能量转换
壳体受撞过程遵守能量守恒定律,在整个过程中钢球的撞击动能绝大部分将会被耗散,转变成以下几种能量:受撞壳体的动能、结构变形能以及接触摩擦产生的热能,在计算中还有一部分会转变成模型的沙漏能。直接从中间钢球(0号球)与壳体即将接触时刻开始计起,图 7给出了整个过程中各种能量的变化曲线。可以看出,钢球的初始动能随着撞击过程的进行将会被耗散,损失的动能有97.3%转变成了受撞壳体的结构变形能。撞击引起的壳体运动很小,因此壳体动能很小,同时,数值模拟中的沙漏能也很小,都可以忽略不计。从图中还可以发现,钢球在撞击过程中发生了反弹现象,还剩余一部分的撞击动能,考虑重力影响,反弹后的钢球动能将会转变成重力势能,再次下落撞击壳体结构,最终转变成壳体结构的变形能。
2. 模型试验验证
2.1 试验模型
为了与数值模拟结果进行对比,开展了相应的模型试验。通过采用特定的装置和措施,使得5只钢球按照给定高度、分布方式坠落,撞击壳体的指定位置,受撞壳体结构模型及撞击钢球如图 8所示。
试验开始前,受撞圆柱壳模型放置在特定的试验池内,弧顶向上,两侧的纵边与试验池底钢板焊接来模拟刚性固定的边界条件。5只撞击钢球悬挂在受撞圆柱壳中间位置的弧顶正上方,距离弧顶7 m,通过连接在吊车上的电磁钩瞬间释放自由下落撞击壳体模型。壳体模型受撞过程中的撞击力是通过安装在钢球起吊端一侧的加速度传感器来测量的,通过动态测试仪器可以直接得到该过程中的加速度值,然后根据Fi=miai可以求出各个钢球的撞击力,式中Fi、mi和ai分别为i号钢球的撞击力、质量和加速度,加速度传感器分别安装在0~3号球上。
2.2 试验结果及对比分析
对壳体模型受撞损伤的过程进行了高速摄像,受撞瞬间的接触状态及受撞后发生的钢球反弹现象如图 9所示。从高速摄像可以观察到,撞击是在十几毫秒内完成的,时间极其短暂。壳体模型在瞬时撞击载荷作用下,受撞区结构产生了明显的变形,同时整体还产生了明显的振动现象。钢球发生了反弹现象,0号钢球反弹方向基本是垂直向上的,而1~4号钢球由于模型弧度的影响,反弹方向是稍微偏向外侧的。反弹后的钢球在重力作用下会再次撞击模型,但造成的二次结构损伤不是很明显。
2.2.1 撞击力对比
图 10所示为0号和1号球撞击力的模型试验结果与数值模拟结果对比图,可以看出,2种结果吻合得较好,两者撞击力峰值和变化趋势都有很好的相似性。与数值模拟结果相比,试验得到的0号球撞击力曲线同样存在2个较明显的峰值,模型试验首次峰值的量值和卸载时间都比数值模拟计算的更大,造成这种差异的原因可能是0号球与其余4只球之间的距离在模型试验和计算之间存在微小差异,导致其余4只球的撞击对0号球产生的影响不同,但对0号球的撞击力最大峰值的影响很小。
2.2.2 壳体结构变形对比
受撞后外壳和外壳环肋骨上产生的损伤变形的模型试验结果与数值模拟结果对比如图 11所示。首先,从结构损伤变形范围来看,2种结果都显示:损伤变形集中在外壳板上5个受撞击点形成的面内,变形在实肋板处存在较明显的终止现象。其次,从损伤模式来看,2种结果均显示:外壳板的变形模式主要包含2种变形模式,一种是5只钢球撞击点处的壳板凹陷,另一种是连接1~4号钢球相邻撞击点的外壳板屈曲变形,如图 11(a)所示。这部分是由相邻受撞区壳板凹陷变形引起的连接区壳板面内挤压而造成的,即多物体撞击产生的变形耦合现象,这也是其区别于单物体撞击的典型特征。此外,外壳内表面上的环肋骨随壳板变形产生了屈曲失稳、压皱和扭曲等变形模式。
采用激光跟踪仪对试验结束后的模型外壳板受撞损伤变形量进行了测量,图 12给出了外壳板上5只钢球撞击深度的试验测量结果和数值模拟结果。对比可以看出,0号球造成的撞深最大,试验测量和数值模拟计算分别为103.2和106.0 mm,两者比较接近;其余4只球撞深的2种结果差异较大。产生这种现象的原因可能有:(1)变形测量时的操作误差,例如激光定位时没有扫描到最大变形处;(2)模型的初始挠度误差;(3)撞击前钢球位置存在偏差,越靠近圆弧两侧,产生的撞深越小。上述原因也正是模型试验不确定性的表现,但从整体来看,模型试验和数值模拟结果吻合较好,有限元数值模拟能够较准确地反映壳体结构受多物体撞击的损伤特性。
3. 结论
针对双层环肋圆柱壳结构受到多物体撞击问题,分别开展了数值模拟计算和模型试验,通过对两者结果的比较,得到如下结论:
(1) 双层环肋圆柱壳结构同时受多物体撞击是一个瞬态动响应过程,在巨大瞬时冲击载荷作用下,受撞区壳板会迅速超越弹性变形而产生塑性变形;撞击的物体、速度、方向均相同的前提下,沿圆柱壳板径向撞击形成的撞深和撞击力最大。
(2) 多物体撞击会造成外壳板一定区域的损伤变形,当撞击物分布均匀、紧密时,壳板的损伤区域不仅包括与撞击物接触区,还包括连接这些部位的区域,后者是由多物体撞击引起的变形耦合而产生的,这也是区别于单物体撞击的典型特征。
(3) 多物体撞击产生的撞击力会相互干扰,导致其非线性特征更明显;
(4) 双层圆柱壳的外壳能对内壳起到较好的防护作用,在外壳没被撞穿的情况下,其结构变形会吸收绝大部分的撞击动能,可以通过优化外壳的吸能效率来达到双层壳体结构物内壳防撞的目的。
-
表 1 TNT炸药材料参数
Table 1. TNT material parameters
ρTNT/(kg·m−3) DCJ/(m·s−1) pCJ/GPa AJWL/GPa BJWL/GPa R1 R2 w ETNT/(J·mm−3) 1630 6930 21 371 3.231 4.15 0.95 0.35 6 注:ρTNT为炸药的密度,DCJ 和pCJ分别为CJ爆轰阶段的速度和压力. 表 2 S690的J-C模型参数
Table 2. J-C model parameters for S690
A/MPa B/MPa C n 722 400 0.21 0.57 表 3 仿真工况设置
Table 3. Simulation condition configurations
工况 a/mm m/kg 爆距/mm δ/mm 1~14 500 0.5 100 4、6、8、10、12、
14、16、18、20、
22、24、26、28、3015~28 600 0.5 100 29~42 800 0.5 100 43~56 1000 0.5 100 57~70 1200 0.5 100 71~84 1500 0.5 100 表 4 各工况高强钢板的宽厚比和最大位移
Table 4. Width-thickness ratios and maximum displacements of high-strength steel plate under different conditions
工况 a/mm δ/mm a/δ 位移/mm 工况 a/mm δ/mm a/δ 位移/mm 工况 a/mm δ/mm a/δ 位移/mm 1 500 4 125.00 - 29 800 4 200.00 - 57 1200 4 300.00 - 2 6 83.33 - 30 6 133.33 - 58 6 200.00 - 3 8 62.50 45.00 31 8 100.00 50.00 59 8 150.00 56.60 4 10 50.00 35.70 32 10 80.00 42.30 60 10 120.00 48.10 5 12 41.67 28.50 33 12 66.67 34.50 61 12 100.00 39.30 6 14 35.71 21.70 34 14 57.14 28.00 62 14 85.71 33.00 7 16 31.25 16.50 35 16 50.00 23.00 63 16 75.00 27.60 8 18 27.78 12.40 36 18 44.44 17.60 64 18 66.67 22.70 9 20 25.00 9.78 37 20 40.00 13.00 65 20 60.00 18.20 10 22 22.73 7.79 38 22 36.36 10.10 66 22 54.55 14.10 11 24 20.83 6.30 39 24 33.33 8.40 67 24 50.00 11.91 12 26 19.23 5.17 40 26 30.77 7.03 68 26 46.15 10.10 13 28 17.86 4.29 41 28 28.57 5.85 69 28 42.86 8.20 14 30 16.67 3.60 42 30 26.67 4.95 70 30 40.00 6.90 15 600 4 150.00 / 43 1000 4 250.00 / 71 1500 4 375.00 / 16 6 100.00 / 44 6 166.67 / 72 6 250.00 / 17 8 75.00 46.60 45 8 125.00 53.00 73 8 187.50 63.10 18 10 60.00 38.10 46 10 100.00 44.30 74 10 150.00 52.00 19 12 50.00 30.10 47 12 83.33 37.30 75 12 125.00 42.40 20 14 42.86 23.40 48 14 71.43 30.60 76 14 107.14 35.70 21 16 37.50 18.00 49 16 62.50 25.00 77 16 93.75 29.30 22 18 33.33 13.40 50 18 55.56 20.00 78 18 83.33 24.20 23 20 30.00 10.60 51 20 50.00 15.20 79 20 75.00 20.10 24 22 27.27 8.55 52 22 45.45 11.90 80 22 68.18 16.30 25 24 25.00 6.95 53 24 41.67 9.60 81 24 62.50 13.20 26 26 23.08 5.76 54 26 38.46 8.21 82 26 57.69 11.20 27 28 21.43 4.87 55 28 35.71 7.20 83 28 53.57 9.10 28 30 20.00 4.07 56 30 33.33 6.10 84 30 50.00 8.20 -
[1] WANG X, LIU C, ZHOU Z Q, et al. In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations [J]. Journal of Materials Research and Technology, 2021, 13: 823–833. DOI: 10.1016/j.jmrt.2021.05.010. [2] WANG X, CHEN J G, SU G F, et al. Application of electromagnetism method to characterize the degradation behavior in structural mild steel within the elastic range [J]. Construction and Building Materials, 2020, 241: 118011. DOI: 10.1016/j.conbuildmat.2020.118011. [3] LIU J, WU C Q, LI C G, et al. Blast testing of high performance geopolymer composite walls reinforced with steel wire mesh and aluminium foam [J]. Construction and Building Materials, 2019, 197: 533–547. DOI: 10.1016/j.conbuildmat.2018.11.207. [4] AL-THAIRY H. A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load [J]. International Journal of Impact Engineering, 2016, 94: 120–133. DOI: 10.1016/j.ijimpeng.2016.04.007. [5] SUN Y X, WANG X, JI C, et al. Experimental investigation on anti-penetration performance of polyurea-coated ASTM1045 steel plate subjected to projectile impact [J]. Defence Technology, 2021, 17(4): 1496–1513. DOI: 10.1016/j.dt.2020.08.005. [6] CHEN A Q, LOUCA L A, ELGHAZOULI A Y. Behaviour of cylindrical steel drums under blast loading conditions [J]. International Journal of Impact Engineering, 2016, 88: 39–53. DOI: 10.1016/j.ijimpeng.2015.09.007. [7] ZHOU Z Q, CHEN J G, YUAN H Y, et al. The role of Al reaction rate in the damage effect and energy output of RDX-based aluminized explosives in concrete [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(3): 319–326. DOI: 10.1002/prep.201800093. [8] WU T Y, JIANG N, ZHOU C B, et al. Evaluate of anti-explosion for high-pressure gas steel pipeline subjected to ground explosion [J]. Journal of Constructional Steel Research, 2021, 177: 106429. DOI: 10.1016/j.jcsr.2020.106429. [9] 汪维, 刘光昆, 赵强, 等. 近爆作用下方形板表面爆炸载荷分布函数研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 144–152. DOI: 10.1360/SSPMA-2019-0188.WANG W, LIU G K, ZHAO Q, et al. Study on the distribution function of blast loads on the surface of a square plate under near-explosion [J]. Science China: Physics, Mechanics, and Astronomy, 2020, 50(2): 144–152. DOI: 10.1360/SSPMA-2019-0188. [10] GAN L, ZONG Z H, CHEN Z J, et al. Differences in responses of square steel plates exposed to blast loads generated by cubic and spherical explosives [J]. Thin-Walled Structures, 2023, 182: 110332. DOI: 10.1016/j.tws.2022.110332. [11] 施龙, 李建平, 王川. 爆炸作用下板壳结构响应特性研究 [J]. 爆破器材, 2014, 43(5): 30–34. DOI: 10.3969/j.issn.1001-8352.2014.05.007.SHI L, LI J P, WANG C. Response characteristic research of shell structures under blasting [J]. Explosive Materials, 2014, 43(5): 30–34. DOI: 10.3969/j.issn.1001-8352.2014.05.007. [12] 杨锐, 汪泉, 谢守冬, 等. 负压爆炸载荷作用下固支钢板变形研究 [J]. 高压物理学报, 2023, 37(5): 054102. DOI: 10.11858/gywlxb.20230685.YANG R, WANG Q, XIE S D, et al. Deformation of fixed support steel plate under explosion load in negative pressure environment [J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054102. DOI: 10.11858/gywlxb.20230685. [13] WIERZBICKI T, NURICK G N. Large deformation of thin plates under localised impulsive loading [J]. International Journal of Impact Engineering, 1996, 18(7/8): 899–918. DOI: 10.1016/S0734-743X(96)00027-9. [14] ZHOU Z Q, DU Z C, ZHANG Y L, et al. Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load [J]. Defence Technology, 2024, 32: 430–442. DOI: 10.1016/j.dt.2023.03.025. [15] 赵春风, 张利, 李晓杰. 近场爆炸下波纹双钢板混凝土组合墙板的损伤破坏及抗爆性能 [J]. 高压物理学报, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727.ZHAO C F, ZHANG L, LI X J. Damage failure and anti-blast performance of concrete-infilled double steel corrugated-plate wall under near field explosion [J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 014102. DOI: 10.11858/gywlxb.20230727. [16] GAN L, ZONG Z H, LIN J, et al. Influence of U-shaped stiffeners on the blast-resistance performance of steel plates [J]. Journal of Constructional Steel Research, 2022, 188: 107046. DOI: 10.1016/j.jcsr.2021.107046. [17] 侯晓萌, 曹少俊, 郑文忠. 爆炸荷载作用下钢板-RPC抗爆门动态响应分析 [J]. 建筑结构学报, 2016, 37(S1): 219–226, 232. DOI: 10.14006/j.jzjgxb.2016.S1.031.HOU X M, CAO S J, ZHENG W Z. Analysis on dynamic response of steel-RPC anti-explosion doors under blast load [J]. Journal of Building Structures, 2016, 37(S1): 219–226, 232. DOI: 10.14006/j.jzjgxb.2016.S1.031. [18] SHI G, HU F X, SHI Y J. Recent research advances of high strength steel structures and codification of design specification in China [J]. International Journal of Steel Structures, 2014, 14(4): 873–887. DOI: 10.1007/s13296-014-1218-7. [19] 王蕾. S690QL高强度钢材在不同应力状态下的断裂破坏研究 [J]. 机械工程师, 2019(8): 100–102.WANG L. Fracture failure investigation of S690QL high strength steel under different stress states [J]. Mechanical Engineer, 2019(8): 100–102. [20] ALABI A A, MOORE P L, WROBEL L C, et al. Tensile behaviour of S690QL and S960QL under high strain rate [J]. Journal of Constructional Steel Research, 2018, 150: 570–580. DOI: 10.1016/j.jcsr.2018.08.009. [21] CAI W Y, LI G Q. Experimental study on post-fire mechanical properties and fracture behavior of Q690 steel [J]. Thin-Walled Structures, 2023, 193: 111253. DOI: 10.1016/j.tws.2023.111253. [22] 张秀华, 张唯佳, 张宇. Q460高强钢柱在近爆荷载作用下的动力响应研究 [J]. 振动与冲击, 2022, 41(3): 107–114, 147. DOI: 10.13465/j.cnki.jvs.2022.03.013.ZHANG X H, ZHANG W J, ZHANG Y. Dynamic response of Q460 high strength steel column under near explosion load [J]. Journal of Vibration and Shock, 2022, 41(3): 107–114, 147. DOI: 10.13465/j.cnki.jvs.2022.03.013. [23] LANGDON G S, LEE W C, LOUCA L A. The influence of material type on the response of plates to air-blast loading [J]. International Journal of Impact Engineering, 2015, 78: 150–160. DOI: 10.1016/j.ijimpeng.2014.12.008. [24] 常笑康, 罗本永, 陈长海, 等. 近距空爆载荷作用下高韧钢的抗爆性能及影响因素研究 [J]. 高压物理学报, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732.CHANG X K, LUO B Y, CHEN C H, et al. Study on the blast-resistant performance and influence factors of high-toughness steel subjected to close-range air-blasts [J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054103. DOI: 10.11858/gywlxb.20240732. [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [26] YANG X Q, YANG H, ZHANG S M. Rate-dependent constitutive models of S690 high-strength structural steel [J]. Construction and Building Materials, 2019, 198: 597–607. DOI: 10.1016/j.conbuildmat.2018.11.285. [27] KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: the FCC case [J]. Progress in Materials Science, 2003, 48(3): 171–273. DOI: 10.1016/S0079-6425(02)00003-8. [28] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. DOI: 10.1016/0734-743X(95)00018-2. [29] 陈长海, 朱锡, 侯海量, 等. 近距空爆载荷作用下固支方板的变形及破坏模式 [J]. 爆炸与冲击, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08.CHEN C H, ZHU X, HOU H L, et al. Deformation and failure modes of clamped square plates under close-range air blast loads [J]. Explosion and Shock Waves, 2012, 32(4): 368–375. DOI: 10.11883/1001-1455(2012)04-0368-08. [30] 李旭东, 尹建平, 赵鹏铎, 等. 固支钢板在爆炸与均布载荷耦合作用下的破坏 [J]. 兵器装备工程学报, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005.LI X D, YIN J P, ZHAO P D, et al. Failure of clamped steel plates under local explosion and uniformly distributed load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 26–30, 36. DOI: 10.11809//bqzbgcxb2021.04.005. DOI: 10.11809/bqzbgcxb2021.04.005. -