Research progress on the mechanism of explosion impact injury and protective materials
-
摘要: 爆炸冲击伤是我国面临的重大公共卫生问题,呈现高发、群发、难防的特点,并且危重伤多,感染发生率高,诊治难度大。对爆炸冲击伤施以有效的防护胜过任何最可靠的救治。爆炸冲击伤防护是涉及医学、材料学、爆炸冲击力学等多学科的复杂问题,需要建立起爆炸冲击波传播、伤情评估、材料设计制备及材料衰减性能评测等方面的关系。基于此,本文从爆炸冲击波的产生、传播及爆炸冲击伤的发生机制出发,介绍了肺部、颅脑爆炸伤致伤机制,给出了不同程度的肺部、颅脑冲击伤的损伤力学指标,并系统地综述了爆炸冲击伤防护材料的研究现状及进展,讨论了不同材料的防护机理,重点针对目前广泛使用的爆炸冲击波防护材料,如多孔材料、水凝胶、聚脲等进行综述。此外,针对防护材料衰减爆炸冲击波性能评估方法不统一的问题,对材料衰减爆炸冲击波性能,如生物评估法、引线测试法等评估方法进行了全面的调研并分析了各种评估方法的优缺点。最后展望了在爆炸冲击波防护性能评测、动物爆炸冲击伤伤情和材料防护性能与人员防护之间的尺度关系、材料力学指标与防护性能之间的关系等方面的发展趋势。本文可为人员爆炸冲击伤防护材料的设计制备、应用和测试提供技术、理论参考。Abstract: Explosion shock injury is a major public health problem facing China, characterized by high incidence rate, mass occurrence, and difficulty in prevention, with many critical injuries, high infection rates, and difficult diagnosis and treatment. Effective protection against explosive shock injuries is superior to any reliable treatment. Explosion shock injury protection is a complex problem involving multiple disciplines such as medicine, materials science, and explosion shock mechanics. It requires establishing relationships between the propagation of explosion shock waves, injury assessment, material design and preparation, and evaluation of material attenuation performance. Based on this, starting from the generation, propagation of explosion shock wave and the occurrence mechanism of explosion shock injury, this paper introduces the injury mechanism of lung and brain explosion injury, gives the injury mechanics indexes of different degrees of lung and brain explosion injury, systematically reviews the research status and progress of protective materials for explosion shock injury, discusses the protection mechanism of different materials, and focuses on the widely used protective materials for explosion shock wave, such as porous materials, hydrogels, polyurea, etc. In addition, in response to the problem of inconsistent evaluation methods for the attenuation of explosive shock wave performance of protective materials, a comprehensive investigation was conducted on the evaluation methods of material attenuation of explosive shock wave performance, such as biological evaluation method, lead testing method, etc., and the advantages and disadvantages of various evaluation methods were analyzed. Finally, the development trends in the evaluation of explosion shock wave protection performance, the scale relationship between animal explosion shock injury severity and material protection performance and personnel protection, and the relationship between material mechanics indicators and protection performance were discussed. This article aims to provide technical and theoretical references for the design, preparation, application, and testing of protective materials for personnel explosion and impact injuries.
-
Key words:
- explosion impact injury /
- mechanism of occurrence /
- protection /
- material
-
六硝基六氮杂异伍兹烷(CL-20)是一种高能量密度炸药[1],其爆压、爆速等参数均优于奥克托今(HMX)[2],在CL-20炸药中加入金属粉(铝粉)可以大幅度提高其爆炸能量[3-5]。随着当代水下武器的发展,提高炸药的水中爆炸威力一直是各国科研人员的研究热点。目前,CL-20基及其含铝炸药已经陆续应用到水下武器战斗部中[6]。
炸药水中爆炸后,首先在水介质中产生初始冲击波并向四周传播,随后爆炸产物在水介质中形成气泡,开始不断的收缩与膨胀[7]。冲击波载荷与气泡脉动载荷对于水下舰船、潜艇将产生一定程度的损害,但二者引起的毁伤却并不相同。虽然气泡脉动的压力要远小于冲击波压力,但其作用时间却远大于冲击波,尤其当爆炸中心距离附近目标物较近时,会产生“鞭状效应”[8],造成目标物结构的破坏,这对于研究炸药水中气泡脉动过程具有重要的战略意义。在实验室条件下,汪斌等[9]采用高速摄影技术得到PETN水下爆炸的气泡脉动过程以及水射流过程。王树山等[11]利用高速录像技术得到RDX水下爆炸气泡脉动过程与水幕形成过程。马坤等[12采用1.2 m爆炸容器模拟深水爆炸过程,利用高速相机拍摄小当量TNT深水下爆炸气泡脉动过程,拟合得到气泡脉动周期与气泡最大半径随爆炸深度增大的衰减系数。然而,前人的研究主要针对理想炸药气泡脉动情况,关于含铝炸药的气泡脉动实验鲜有报道。在此基础上,本文中利用高速摄影技术,观测CL-20基炸药和CL-20基含铝炸药水中爆炸气泡脉动过程,对比分析二者水下爆炸气泡运动时的不同现象;分析铝粉对于气泡脉动过程的影响规律,为计算炸药的能量输出规律提供实验数据,为水下爆炸武器、水下爆炸气泡动力学提供数据研究基础。
1. 实验部分
1.1 实验样品
实验样品包含2种配方圆柱形压装药柱,每种配方2发,共4发,实验药柱的具体状态如表 1所示。图 1为水中爆炸实验时所用药柱。
表 1 实验药柱参数Table 1. Parameters of explosive grain工况 炸药公式 炸药尺寸/(mm×mm) 密度/(g·cm-3) 1 CL-20/Estane/G/W Ø15×14.68 1.929 2 95/3.5/0.5/1 Ø15×14.68 1.929 3 CL-20/Al/Estane/G/W Ø15×14.21 1.993 4 80/15/3.5/0.5/1 Ø15×14.20 1.994 1.2 实验装置
实验在2 m×2 m×2 m的水箱中进行,水箱由5 mm厚的钢板焊接而成,内装自来水,水面高度为1.6 m,炸药位于水箱水平面的中心位置,实验时利用细线将装配好的待测药柱悬挂在水中,药柱距离水箱底部的距离为0.8 m,距离水面的距离也为0.8 m。药柱中心、压力传感器和高速摄像机处于同一条水平直线上,实验选用PCB138系列水下爆炸压力传感器,传感器的灵敏度为0.144 5 V/MPa,传感器敏感部位与炸药中心位于同一高度,药柱中心与传感器的距离为0.7 m,与高速摄像机的距离为1.4 m,高速摄像机为APX-RS数字式高速相机,拍摄频率为10 000 s-1,在1 ms内能够得到10幅气泡脉动图像,实验采用LED冷光源作为外照明光源,其发出的光线亮度高、显色好,满足实验要求。
炸药在水箱中爆炸时,为了避免来自界面处反射波对冲击波以及气泡脉动信号的影响[13],实验设计时,在水箱内壁周围粘贴一层白色吸波材料,当冲击波波阵面传至水箱界面时,消除强反射冲击波,保证测量数据不受干扰[14],装置如图 2所示。
1.3 实验过程
如图 3所示,实验中以同步脉冲发生器为高压起爆台,由高速摄影机及示波器提供触发信号,以实现实验控制台和各类数据的记录同步。药柱起爆后,高速摄相机获得气泡脉动图像,PCB传感器测得冲击波压力。
2. 结果与讨论
2.1 CL-20基理想炸药气泡脉动
1号药柱与2号药柱,为平行实验,实验结果重复性较好,此处我们以2号药柱为例。实验得到的CL-20基理想炸药气泡脉动过程,如图 4所示,从图中可以清晰地观测到2号药柱水下爆炸气泡的产生、膨胀和收缩过程。炸药起爆后,高温高压的爆炸产物剧烈压缩周围水介质,并迅速向外膨胀,形成爆炸气泡,此时气泡内压力最大,且不均匀分布,气泡内有少量的爆轰产物从气泡表面溢出(t=0.2 ms);随着气泡膨胀增大,气泡内部压力逐渐减小,由于惯性的作用,气泡过度膨胀,t=22.5 ms附近时,气泡膨胀到最大半径为59.9 cm,此时气泡内压力最小,气泡膨胀过程基本呈球形,膨胀过程中气泡的中心位移很小,几乎保持不动。由于气泡的过度膨胀,气泡在静水压力作用下收缩,气泡半径迅速减小:t=41.0 ms时,气泡仍为球形;t=45.1 ms时,气泡下表面收缩速度更快,底部先开始坍塌,向气泡内部凹陷,产生竖直向上的射流;t=46.4 ms附近时,气泡收缩至最小半径并迅速上浮,从气泡收缩过程开始,气泡表面爆炸产物溢出时产生清晰迹线,此时气泡内的压力远高于周围流体压力,气泡将再次膨胀;t=47.1 ms时,气泡上表面开始向上凸起;t=50.2 ms时,气泡继续膨胀,同时不再是规则的球形,随着爆炸产物的溢出,气泡表面也不再是光滑的表面。随后,气泡又开始新一轮的脉动,随着脉动过程中能量的消耗,各气泡脉动周期和气泡半径极大值逐渐减小,直至气泡能量被消耗殆尽。
实验得到距药柱0.7 m处压力时程曲线,如图 5所示。从图 5中可以清晰地分辨出冲击波、第一次气泡脉动、第二次气泡脉动压力及周期,实验数据没有明显的干扰信号。由图 5可知,首先传播的是初始冲击波,冲击波峰值压力高,压力为15.49 MPa,持续时间短,波形陡峭。冲击波过后,当气泡半径达到最大值时开始收缩,水中压力将低于静水压力,出现负压;而后当气泡半径邻近最小值时,水中的压力又逐渐上升,出现二次压力波,二次压力波的峰值压力虽远低于冲击波的峰值压力,但持续时间长,基本呈对称形状。因此其作用不容忽视,如图 6所示。二次压力波之后还会出现三次压力波,二次压力波和三次压力波之间也会出现负压,但是二次压力波过后的气泡能量所剩无几,其作用可忽略不计,在此不作相关讨论。
2.2 CL-20基含铝炸药气泡脉动
实验得到的CL-20基含铝炸药气泡脉动过程如图 7所示。以3号药柱为例,与理想炸药相比,二者的气泡脉动规律大体一致。当t=25.3 ms附近时,气泡膨胀到最大(半径为68.1 cm);t=50.2 ms附近时,气泡半径收缩至最小。对于含铝炸药,Cook等[15]提出了二次反应理论,首先是单质炸药和其他组分的爆轰,其次是在C-J面之后,铝粉与爆轰产物间的二次氧化反应。二次反应放热发生时刻为炸药爆轰后的十几到几十微秒,铝粉相对于炸药是惰性物质,在反应动力学上对反应物的浓度起稀释作用,因而导致爆速、爆压及波阵面上的化学能降低。CL-20基含铝炸药达到气泡半径最大的时间以及气泡半径都比理想炸药大一些,这些都充分说明了含铝炸药二次反应放热的特点。图 8反映了含铝炸药二次反应放热的现象:炸药爆轰结束后,铝粉与爆炸产物的二次反应放出大量的热,使气泡内的反应产物温度不断升高;在气泡收缩至最小半径时,此时气泡内压力最大,在持续的高压与高温作用下,气泡内部高温的二次反应产物产生火球。摄像机以幅频10 000 s-1拍摄,在1 ms内能够得到10幅气泡脉动图像,而气泡内部捕捉到49.5~49.8 ms四张图片,时间间隔只有0.4 ms,这也充分体现了高幅频摄像机在观测水下爆炸气泡实验中的优势。
实验得到距CL-20基含铝炸药0.7 m处压力时程曲线,如图 9~10所示。对比图 5,CL-20基含铝炸药与CL-20基理想炸药水下爆炸冲击波传播规律大体相同,峰值压力为15.20 MPa,略低于CL-20基理想炸药;此外,从2幅图中可以直观地看出,2种炸药的脉动周期、二次压力波的大小及区别。4发实验水下爆炸参数如表 2所示,1与2, 3与4为平行实验,从实验结果来看,重复性较好。
表 2 实验药柱参数Table 2. Parameters of explosive grain工况 脉动周期/ms 气泡半径/cm 压力峰值/MPa 1 46.75 60.6 15.52 2 46.76 59.9 15.49 3 49.97 68.1 15.20 4 50.43 67.6 15.12 2.3 CL-20基理想炸药与含铝炸药气泡脉动对比
由图 4和图 7可以看出,气泡在膨胀阶段基本为球形,气泡收缩阶段为不规则球形,为了对比CL-20基理想炸药(2号药柱)与含铝炸药(3号药柱)的气泡脉动情况,对气泡半径进行近似处理。图 11为2号药柱与3号药柱水下爆炸气泡半径随时间的变化曲线。与理想炸药相比,含铝炸药爆轰后气泡脉动周期较长,气泡半径较大:对于2号药柱非含铝炸药,气泡的脉动周期为46.76 ms,气泡最大半径为59.9 cm,3号药柱含铝炸药,气泡的脉动周期为49.97 ms,气泡最大半径为68.1 cm;CL-20基含铝炸药的气泡半径、脉动周期都明显升高,半径增大13.7 %,周期增大6.9 %。
将气泡脉动过程中的直径-时间变化关系对时间微分,可以得到气泡膨胀、收缩速度随时间变化的关系曲线[16](图 12)。图 12中纵坐标为正值的曲线段对应气泡膨胀过程,炸药爆轰结束后,对应气泡膨胀速度最大,2号药柱起始膨胀速度约为132 m/s,3号药柱起始膨胀速度约为138 m/s,随着时间的推移,气泡膨胀速度逐渐减小直至零,此时对应气泡最大半径,气泡停止膨胀;纵坐标为负值的曲线段对应气泡收缩过程,随着时间增大收缩速度绝对值逐渐增大,2号药柱气泡收缩最大速度约109 m/s (t=44.1 ms),3号药柱气泡收缩最大速度约为105 m/s (t=48.0 ms),达到最大收缩速度后,气泡继续收缩同时收缩速度逐渐减小,当收缩速度为零时,气泡达到最小半径,此后气泡继续下一轮的膨胀和收缩。由于气泡脉动过程中抵抗水的阻力消耗了部分能量,气泡的起始膨胀速度大于收缩阶段的最大速度。从图 12可以看出,速度纵坐标为正值代表气泡膨胀阶段,3号药柱气泡曲线段在2号药柱曲线段上方,说明含铝炸药气泡膨胀速度大于非含铝炸药,由于铝粉与爆炸产物的二次反应放热,使气泡内的压力升高导致膨胀速度加快;速度纵坐标为负值即气泡收缩阶段,3号药柱气泡曲线段在2号药柱曲线段上方,说明2号药柱非含铝炸药气泡收缩速度大于3号药柱含铝炸药,因为气泡收缩过程由流场中周围流体静压力驱动,当周围水的静水压力相同时,3号药柱含铝炸药气泡收缩速度小,表明3号药柱含铝炸药气泡内压力比2号药柱非含铝炸药气泡大,这从侧面反应了铝粉的二次反应放热特点。
将气泡脉动速度时间关系曲线对时间微分,拟合得到气泡脉动加速度随时间变化关系[16],如图 13所示。气泡膨胀过程中加速度的绝对值逐渐减小,即膨胀速度变化逐渐减慢,对应图 12中速度曲线逐渐平缓以及图 11中气泡半径逐渐增大;气泡收缩过程加速度绝对值逐渐增大,即速度变化加快,对应图 12中速度曲线逐渐陡峭以及图 11中气泡半径逐渐变小。从图 13中可以看出,气泡刚开始膨胀阶段,2号药柱非含铝炸药气泡加速度绝对值要大一些,随着气泡的继续膨胀,3号药柱含铝炸药气泡加速度绝对值慢慢超过2号药柱非含铝炸药直至气泡最大半径处,加速度绝对值接近于零;随后气泡开始收缩,2号药柱非含铝炸药气泡加速度绝对值大于3号药柱含铝炸药,这都是含铝炸药中铝粉二次反应的缘故,释放的热量继续支持气泡的脉动过程。
3. 结论
为研究CL-20基及其含铝炸药水下爆炸气泡脉动过程规律,采用水箱实验及高速摄影技术,基于小当量炸药水中爆炸试验,得到结论如下:获得CL-20基及其含铝炸药气泡脉动过程的图片,水中爆炸冲击波传播曲线;拟合得到气泡半径、速度、加速度与时间的变化曲线,对比分析发现,CL-20基含铝炸药的气泡半径、脉动周期都明显升高,半径增大13.7 %,周期增大6.9 %,冲击波峰值压力略有下降, CL-20基含铝炸药气泡膨胀速度快,收缩速度慢;在实验条件下,通过高速摄相技术,捕捉到CL-20基含铝炸药中铝粉与爆炸产物的二次反应放热,致使反应产物产生火球现象,可为今后的含铝炸药爆炸机理的研究提供了有效的实验手段。
感谢中国工程物理研究院化工材料研究所聂福德研究员和杨志剑助理研究员提供的实验样品。
-
测试方法 特点 优点 缺点 等效压力罐法[95] 依据实验现场安放的薄铁皮罐在爆炸后的毁伤状况,
对冲击波威力进行评估成本低,操作简单,
可测冲击波超压定量性不准确;
适用近场超压生物评估法[96] 对生物实验体的受伤程度进行冲击波强度评估 直接有效 专业性强 高速摄影法[97] 利用高速摄像机拍摄到的爆炸过程以及波阵面的运动过程,
推算冲击波压力记录完整、直观 不准确 存储测试法[98] 将引线、传感器、适配器和数据采集器集合为一个整体,
能够独立采集、存储信息无需引线布置,
测试精确设备昂贵,信息易丢 引线测试法[98] 将传感器安装在测试现场,通过电缆将信号传输到仪表,
最后使用计算机分析数据完整记录冲击波的
传播情况,测量精确易受环境和电磁干扰,
布设麻烦,成本高且易损坏 -
[1] WANG J M. The features of explosive fragments induced injury and management [M]//FU X B, LIU L M. Advanced Trauma and Surgery. Singapore: Springer, 2017: 79–103. DOI: 10.1007/978-981-10-2425-2_6. [2] TSUKADA H, NGUYEN T T N, BREEZE J, et al. The risk of fragment penetrating injury to the heart [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105776. DOI: 10.1016/j.jmbbm.2023.105776. [3] DHARANI KUMAR S, SAMVEL R, ARAVINDH M, et al. Ballistic studies on synthetic fibre reinforced polymer composites and it’s applications: a brief review [J]. Materials Today: Proceedings, 2023. DOI: 10.1016/j.matpr.2023.03.679. [4] NEEDHAM C E, YOUNG L R, CHAMPION H R. Blast physics and biophysics [M]//CALLAWAY D W, BURSTEIN J L. Operational and Medical Management of Explosive and Blast Incidents. Cham: Springer, 2020: 19–33. DOI: 10.1007/978-3-030-40655-4_2. [5] 杨策, 蒋建新, 杜娟, 等. 天津港“8·12”特大爆炸事件对爆炸冲击伤诊治的警示 [J]. 中华诊断学电子杂志, 2016, 4(1): 30–32. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.009.YANG C, JIANG J X, DU J, et al. Vigilance and enlightenment from diagnosis and therapy of blast injury in the “8·12” giant explosion in Tianjin harbor [J]. Chinese Journal of Diagnostics (Electronic Edition), 2016, 4(1): 30–32. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.009. [6] 杨策, 蒋建新, 杜娟, 等. 2000年至2015年国内174起爆炸事故冲击伤诊治分析 [J]. 中华诊断学电子杂志, 2016, 4(1): 36–40. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.011.YANG C, JIANG J X, DU J, et al. Analysis of the current situation of diagnosis and therapy in Chinese severe explosion accidents over the past 15 years [J]. Chinese Journal of Diagnostics (Electronic Edition), 2016, 4(1): 36–40. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.011. [7] 王正国. 原发肺冲击伤 [J]. 中华肺部疾病杂志(电子版), 2010, 3(4): 231–233. DOI: 10.3877/cma.j.issn.1674-6902.2010.04.001.WANG Z G. Primary blast lung injury [J]. Chinese Journal of Lung Diseases (Electronic Edition), 2010, 3(4): 231–233. DOI: 10.3877/cma.j.issn.1674-6902.2010.04.001. [8] 李向荣, 马翊闻, 李帅, 等. 爆炸冲击波峰值区域频率分布特性研究 [J]. 北京理工大学学报, 2019, 39(2): 125–130. DOI: 10.15918/j.tbit1001-0645.2019.02.003.LI X R, MA Y W, LI S, et al. Research on frequency distribution of peak area of blast shock wave [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 125–130. DOI: 10.15918/j.tbit1001-0645.2019.02.003. [9] BYKOVA N G, ZABELINSKII I E, IBRAGIMOVA L B, et al. Radiation characteristics of air in the ultraviolet and vacuum ultraviolet regions of the spectrum behind the front of strong shock waves [J]. Russian Journal of Physical Chemistry B, 2018, 12(1): 108–114. DOI: 10.1134/S1990793118010165. [10] ZHUO Z, LIU Z L. Mechanical mechanisms and simulation of blast wave protection [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 89–97. DOI: 10.1007/978-981-19-2856-7_5. [11] KHRISTOFOROV B D. Effect of properties of the source on the action of explosions in air and water [J]. Combustion, Explosion, and Shock Waves, 2004, 40(6): 714–719. DOI: 10.1023/B:CESW.0000048277.31127.06. [12] FRIEDLANDER F G. Propagation of a pulse in an inhomogeneous medium: EM-76 [R]. New York: New York University, 1955. [13] WANG X, DU J, ZHUANG Z, et al. Incidence, casualties and risk characteristics of civilian explosion blast injury in China: 2000–2017 data from the state Administration of Work Safety [J]. Military Medical Research, 2020, 7(1): 29. DOI: 10.1186/s40779-020-00257-5. [14] KOBAYASHI S, HENMI H. Dispersion of shock wave transmitted into non-uniform materials [C]//Proceedings of ASME 2017 Fluids Engineering Division Summer Meeting. Waikoloa: ASME, 2017. DOI: 10.1115/FEDSM2017-69501. [15] BANDAK F A, LING G, BANDAK A, et al. Injury biomechanics, neuropathology, and simplified physics of explosive blast and impact mild traumatic brain injury [J]. Handbook of Clinical Neurology, 2015, 127: 89–104. DOI: 10.1016/B978-0-444-52892-6.00006-4. [16] BEN-DOR G, IGRA O, ELPERIN T. Handbook of shock waves, three volume set [M]. New York: Academic, 2000. [17] SCOTT T. Primary blast lung injury [M]//BULL A M J, CLASPER J, MAHONEY P F. Blast Injury Science and Engineering: A Guide for Clinicians and Researchers. 2nd ed. Cham: Springer, 2023: 193–199. DOI: 10.1007/978-3-031-10355-1_18. [18] REICHENBACH T. Hearing damage through blast [M]//BULL A M J, CLASPER J, MAHONEY P F. Blast Injury Science and Engineering: A Guide for Clinicians and Researchers. 2nd ed. Cham: Springer, 2023: 209–216. DOI: 10.1007/978-3-031-10355-1_20. [19] MORLEY M G, NGUYEN J K, HEIER J S, et al. Blast eye injuries: a review for first responders [J]. Disaster Medicine and Public Health Preparedness, 2010, 4(2): 154–160. DOI: 10.1001/dmp.v4n2.hra10003. [20] OU Y, CLIFTON B A, LI J H, et al. Traumatic brain injury induced by exposure to blast overpressure via ear canal [J]. Neural Regeneration Research, 2022, 17(1): 115–121. DOI: 10.4103/1673-5374.314311. [21] ZHONG Q J. Heart blast injury [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 349–355. DOI: 10.1007/978-981-19-2856-7_23. [22] TURÉGANO-FUENTES F, PÉREZ-DIAZ D, SANZ-SÁNCHEZ M, et al. Abdominal blast injuries: different patterns, severity, management, and prognosis according to the main mechanism of injury [J]. European Journal of Trauma and Emergency Surgery, 2014, 40(4): 451–460. DOI: 10.1007/s00068-014-0397-4. [23] CHAVKO M, WATANABE T, ADEEB S, et al. Relationship between orientation to a blast and pressure wave propagation inside the rat brain [J]. Journal of Neuroscience Methods, 2011, 195(1): 61–66. DOI: 10.1016/j.jneumeth.2010.11.019. [24] LOGAN N J, ARORA H, HIGGINS C A. Evaluating primary blast effects in vitro [J]. Journal of Visualized Experiments, 2017(127): 55618. DOI: 10.3791/55618. [25] RUBIO J E, UNNIKRISHNAN G, SAJJA V S S S, et al. Investigation of the direct and indirect mechanisms of primary blast insult to the brain [J]. Scientific Reports, 2021, 11(1): 16040. DOI: 10.1038/s41598-021-95003-9. [26] SUN Y L, QIAN X M, SHU C M, et al. Effects of explosion shock waves on lung injuries in rabbits [J]. Shock and Vibration, 2021, 2021: 6676244. DOI: 10.1155/2021/6676244. [27] 王正国. 爆炸伤概述 [J]. 野战外科通讯, 2004, 29(4): 1–4. [28] 王正国, 蒋建新. 爆炸冲击伤原理与实践 [M]. 北京: 人民卫生出版社, 2020.WANG Z G, JIANG J X. Explosive blast injury principles and practices [M]. Beijing: People’s Medical Publishing House, 2020. [29] 王鸿, 高俊宏, 张文娟, 等. 肺爆震伤的分子机制研究进展 [J]. 中华创伤杂志, 2020, 36(8): 749–754. DOI: 10.3760/cma.j.issn.1001-8050.2020.08.014.WANG H, GAO J H, ZHANG W J, et al. Research progress in molecular mechanism of blast lung injury [J]. Chinese Journal of Trauma, 2020, 36(8): 749–754. DOI: 10.3760/cma.j.issn.1001-8050.2020.08.014. [30] BARNETT-VANES A, SHARROCK A, EFTAXIOPOULOU T, et al. CD43Lo classical monocytes participate in the cellular immune response to isolated primary blast lung injury [J]. Journal of Trauma and Acute Care Surgery, 2016, 81(3): 500–511. DOI: 10.1097/TA.0000000000001116. [31] ELSAYED N M, ARMSTRONG K L, WILLIAM M T, et al. Antioxidant loading reduces oxidative stress induced by high-energy impulse noise (blast) exposure [J]. Toxicology, 2000, 155(1/2/3): 91–99. DOI: 10.1016/s0300-483x(00)00281-x. [32] WANG H, ZHANG W J, LIU J R, et al. NF-κB and FosB mediate inflammation and oxidative stress in the blast lung injury of rats exposed to shock waves [J]. Acta Biochimica et Biophysica Sinica, 2021, 53(3): 283–293. DOI: 10.1093/abbs/gmaa179. [33] SEITZ D H, PERL M, MANGOLD S, et al. Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils [J]. Shock, 2008, 30(5): 537–544. DOI: 10.1097/SHK.0b013e31816a394b. [34] NAKAGAWA A, OHTANI K, ARMONDA R, et al. Primary blast-induced traumatic brain injury: lessons from lithotripsy [J]. Shock Waves, 2017, 27(6): 863–878. DOI: 10.1007/s00193-017-0753-5. [35] NAKAGAWA A, MANLEY G T, GEAN A D, et al. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research [J]. Journal of Neurotrauma, 2011, 28(6): 1101–1119. DOI: 10.1089/neu.2010.1442. [36] SIMARD J M, PAMPORI A, KELEDJIAN K, et al. Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain [J]. Journal of Neurotrauma, 2014, 31(14): 1292–1304. DOI: 10.1089/neu.2013.3016. [37] DE LANEROLLE N C, HAMID H, KULAS J, et al. Concussive brain injury from explosive blast [J]. Annals of Clinical and Translational Neurology, 2014, 1(9): 692–702. DOI: 10.1002/acn3.98. [38] DANG B Q, CHEN W L, HE W C, et al. Rehabilitation treatment and progress of traumatic brain injury dysfunction [J]. Neural Plasticity, 2017, 2017: 1582182. DOI: 10.1155/2017/1582182. [39] 徐召溪, 徐国政. 爆炸冲击波致轻型颅脑损伤患者血脑屏障损伤机制及其与迟发性神经功能障碍的关系 [J]. 解放军医学杂志, 2016, 41(5): 425–429. DOI: 10.11855/j.issn.0577-7402.2016.05.15.XU Z X, XU G Z. Mechanism of blood-brain barrier impairment after mild traumatic brain injury caused by blast shock waves and its relationship with delayed nerve dysfunction [J]. Medical Journal of Chinese People’s Liberation Army, 2016, 41(5): 425–429. DOI: 10.11855/j.issn.0577-7402.2016.05.15. [40] 康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521. [41] CHAMPION H R, HOLCOMB J B, YOUNG L A. Injuries from explosions: physics, biophysics, pathology, and required research focus [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2009, 66(5): 1468–1477. DOI: 10.1097/TA.0b013e3181a27e7f. [42] PRAT N J, DABAN J L, VOIGLIO E J, et al. Wound ballistics and blast injuries [J]. Journal of Visceral Surgery, 2017, 154(sl): 9–12. DOI: 10.1016/j.jviscsurg.2017.07.005. [43] VAN DER WOERD J D, WAGNER M, PIETZSCH A, et al. Design methods of blast resistant façades, windows, and doors in Germany: a review [J]. Glass Structures and Engineering, 2022, 7(4): 693–710. DOI: 10.1007/s40940-022-00213-w. [44] 孔霖, 苏健军, 李芝绒, 等. 几种不同爆炸冲击波作用的能量谱分析 [J]. 火炸药学报, 2010, 33(6): 76–79. DOI: 10.3969/j.issn.1007-7812.2010.06.018.KONG L, SU J J, LI Z R, et al. Energy spectrum analysis of several kinds of explosive blast [J]. Chinese Journal of Explosives and Propellants, 2010, 33(6): 76–79. DOI: 10.3969/j.issn.1007-7812.2010.06.018. [45] PHILLIPS Y Y, MUNDIE T G, YELVERTON J T, et al. Cloth ballistic vest alters response to blast [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1988, 28(1): S149–S152. DOI: 10.1097/00005373-198801001-00030. [46] SINGH K, RAJ R, RAJAGOPAL A K, et al. Shock wave attenuation using sandwiched structures made up of polymer foams and shear thickening fluid [J]. Journal of Mechanical Science and Technology, 2023, 37(3): 1311–1316. DOI: 10.1007/s12206-023-0217-z. [47] JIA S Y, WANG C, XU W L, et al. Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea [J]. Defence Technology, 2024, 31: 179–191. DOI: 10.1016/j.dt.2023.06.013. [48] 孙建华, 李艳霞, 魏春荣, 等. 泡沫铁镍金属抑制瓦斯爆炸冲击波的实验研究 [J]. 功能材料, 2013, 44(10): 1390–1394. DOI: 10.3969/j.issn.1001-9731.2013.10.005.SUN J H, LI Y X, WEI C R, et al. Experimental study on the porous foam iron-nickel metal inhibition of explosion wave [J]. Journal of Functional Materials, 2013, 44(10): 1390–1394. DOI: 10.3969/j.issn.1001-9731.2013.10.005. [49] HU Z Q, SHAO J L, JIA S Y, et al. Propagation properties of shock waves in polyurethane foam based on atomistic simulations [J]. Defence Technology, 2024, 31: 117–129. DOI: 10.1016/j.dt.2023.01.020. [50] GAO Y Y, LALEVÉE J, SIMON-MASSERON A. An overview on 3D printing of structured porous materials and their applications [J]. Advanced Materials Technologies, 2023, 8(17): 2300377. DOI: 10.1002/admt.202300377. [51] BRANCH B, IONITA A, PATTERSON B M, et al. A comparison of shockwave dynamics in stochastic and periodic porous polymer architectures [J]. Polymer, 2019, 160: 325–337. DOI: 10.1016/j.polymer.2018.10.074. [52] KADER M A, HAZELL P J, BROWN A D, et al. Novel design of closed-cell foam structures for property enhancement [J]. Additive Manufacturing, 2020, 31: 100976. DOI: 10.1016/j.addma.2019.100976. [53] FARACI D, DRIEMEIER L, COMI C. Bending-dominated auxetic materials for wearable protective devices against impact [J]. Journal of Dynamic Behavior of Materials, 2021, 7(3): 425–435. DOI: 10.1007/s40870-020-00284-2. [54] WANG M Z, WU H Z, YANG L, et al. Structure design of arc-shaped auxetic metamaterials with tunable Poisson’s ratio [J]. Mechanics of Advanced Materials and Structures, 2023, 30(7): 1426–1436. DOI: 10.1080/15376494.2022.2033890. [55] TANCOGNE-DEJEAN T, KARATHANASOPOULOS N, MOHR D. Stiffness and strength of hexachiral honeycomb-like metamaterials [J]. Journal of Applied Mechanics, 2019, 86(11): 111010. DOI: 10.1115/1.4044494. [56] GAO Y, WEI X Y, HAN X K, et al. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism [J]. International Journal of Solids and Structures, 2021, 233: 111232. DOI: 10.1016/j.ijsolstr.2021.111232. [57] PLEWA J, PŁOŃSKA M, LIS P. Investigation of modified auxetic structures from rigid rotating squares [J]. Materials, 2022, 15(8): 2848. DOI: 10.3390/ma15082848. [58] BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.114907. [59] FÍLA T, ZLÁMAL P, JIROUŠEK O, et al. Impact testing of polymer-filled auxetics using split Hopkinson pressure bar [J]. Advanced Engineering Materials, 2017, 19(10): 1700076. DOI: 10.1002/adem.201700076. [60] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018. [61] JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037. [62] YANG S, QI C, WANG D, et al. A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores [J]. Advances in Mechanical Engineering, 2013, 2013: 589216. DOI: 10.1155/2013/589216. [63] ZHANG J J, LU G X, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review [J]. Composites Part B: Engineering, 2020, 201: 108340. DOI: 10.1016/j.compositesb.2020.108340. [64] MAGNUS D, SORY D R, LEE J, et al. Study of soft material blast mitigation effects using a shock tube [J]. AIP Conference Proceedings, 2020, 2272(1): 040009. DOI: 10.1063/12.0001017. [65] SUN J Y, ZHAO X H, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels [J]. Nature, 2012, 489(7414): 133–136. DOI: 10.1038/nature11409. [66] NI J H, LIN S T, QIN Z, et al. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly [J]. Matter, 2021, 4(6): 1919–1934. DOI: 10.1016/j.matt.2021.03.023. [67] LIU J, LIN S T, LIU X Y, et al. Fatigue-resistant adhesion of hydrogels [J]. Nature Communications, 2020, 11(1): 1071. DOI: 10.1038/s41467-020-14871-3. [68] FAN H L, WANG J H, GONG J P. Barnacle cement proteins-inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion [J]. Advanced Functional Materials, 2021, 31(11): 2009334. DOI: 10.1002/adfm.202009334. [69] MATSUDA T, NAKAJIMA T, GONG J P. Fabrication of tough and stretchable hybrid double-network elastomers using ionic dissociation of polyelectrolyte in nonaqueous media [J]. Chemistry of Materials, 2019, 31(10): 3766–3776. DOI: 10.1021/acs.chemmater.9b00871. [70] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogels inspired by muscle training [J]. Science, 2019, 363(6426): 504–508. DOI: 10.1126/science.aau9533. [71] LI T, ZHANG C, XIE Z N, et al. A multi-scale investigation on effects of hydrogen bonding on micro-structure and macro-properties in a polyurea [J]. Polymer, 2018, 145: 261–271. DOI: 10.1016/j.polymer.2018.05.003. [72] ZHANG L, WANG Y T, WANG X, et al. Investigation on the influence mechanism of polyurea material property on the blast resistance of polyurea-steel composite plate [J]. Structures, 2022, 44: 1910–1927. DOI: 10.1016/j.istruc.2022.09.001. [73] CHU D Y, WANG Y G, YANG S L, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate [J]. Defence Technology, 2023, 19: 35–51. DOI: 10.1016/j.dt.2021.11.010. [74] ZHANG P, WANG Z J, ZHAO P D, et al. Experimental investigation on ballistic resistance of polyurea coated steel plates subjected to fragment impact [J]. Thin-Walled Structures, 2019, 144: 106342. DOI: 10.1016/j.tws.2019.106342. [75] 冯加和, 董奇, 张刘成, 等. 聚脲弹性体在爆炸防护中的研究进展 [J]. 含能材料, 2020, 28(4): 277–290. DOI: 10.11943/CJEM2019135.FENG J H, DONG Q, ZHANG L C, et al. Review on using polyurea elastomer for enhanced blast-mitigation [J]. Chinese Journal of Energetic Materials, 2020, 28(4): 277–290. DOI: 10.11943/CJEM2019135. [76] LEE J, JING B B, PORATH L E, et al. Shock wave energy dissipation in catalyst-free poly (dimethylsiloxane) vitrimers [J]. Macromolecules, 2020, 53(12): 4741–4747. DOI: 10.1021/acs.macromol.0c00784. [77] 郭国吉, 陈彩英, 王向明, 等. 聚脲弹性体防护材料的研究进展 [J]. 中国表面工程, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.GUO G J, CHEN C Y, WANG X M, et al. Research progress of polyurea elastomer protective materials [J]. China Surface Engineering, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001. [78] HARIS A, LEE H P, TAN V B C. An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads [J]. Defence Technology, 2018, 14(1): 12–18. DOI: 10.1016/j.dt.2017.08.004. [79] IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea spray coatings: tailoring material properties through chemical crosslinking [J]. Progress in Organic Coatings, 2018, 123: 201–208. DOI: 10.1016/j.porgcoat.2018.07.005. [80] LIANG M Z, ZHOU M, LI X Y, et al. Synergistic effect of combined blast loads on UHMWPE fiber mesh reinforced polyurea composites [J]. International Journal of Impact Engineering, 2024, 183: 104804. DOI: 10.1016/j.ijimpeng.2023.104804. [81] ZHANG L, JI C, WANG X, et al. Strengthening and converse strengthening effects of polyurea layer on polyurea-steel composite structure subjected to combined actions of blast and fragments [J]. Thin-Walled Structures, 2022, 178: 109527. DOI: 10.1016/j.tws.2022.109527. [82] DE TOMASI TESSARI B, VARGAS N, DIAS R R, et al. Influence of the addition of graphene nanoplatelets on the ballistic properties of HDPE/aramid multi-laminar composites [J]. Polymer-Plastics Technology and Materials, 2022, 61(4): 363–373. DOI: 10.1080/25740881.2021.1988966. [83] PANDYA K S, NAIK N K. Analytical and experimental studies on ballistic impact behavior of carbon nanotube dispersed resin [J]. International Journal of Impact Engineering, 2015, 76: 49–59. DOI: 10.1016/j.ijimpeng.2014.09.003. [84] MYLVAGANAM K, ZHANG L C. Energy absorption capacity of carbon nanotubes under ballistic impact [J]. Applied Physics Letters, 2006, 89(12): 123127. DOI: 10.1063/1.2356325. [85] LAURENZI S, PASTORE R, GIANNINI G, et al. Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy [J]. Composite Structures, 2013, 99: 62–68. DOI: 10.1016/j.compstruct.2012.12.002. [86] MA D, WANG C, XU W L, et al. Investigate of shock wave mitigation performance of nano-carbon fillers modified epoxy composites [J]. Polymer Composites, 2022, 43(10): 7463–7472. DOI: 10.1002/pc.26833. [87] AMOS S E, YALCIN B. Hollow glass microspheres for plastics, elastomers, and adhesives compounds [M]. Amsterdam: William Andrew, 2015: 273–280. DOI: 10.1016/b978-1-4557-7443-2.18001-6. [88] WANG T M, CHEN S B, WANG Q H, et al. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead [J]. Materials and Design, 2010, 31(8): 3810–3815. DOI: 10.1016/j.matdes.2010.03.029. [89] DRDLOVÁ M, FRANK M. Mechanical properties of glass microsphere/epoxy foams modified by carbon nanotubes and nanosilica [J]. Journal of Scientific and Industrial Research, 2016, 75(6): 365–370. [90] SHIRA S, BULLER C. Mixing and dispersion of hollow glass microsphere products [M]//AMOS S E, YALCIN B. Hollow Glass Microspheres for Plastics, Elastomers, and Adhesives Compounds. Amsterdam: William Andrew, 2015: 241–271. DOI: 10.1016/B978-1-4557-7443-2.00011-6. [91] THORAT M, SAHU S, MENEZES V, et al. Shock loading of closed cell aluminum foams in the presence of an air cavity [J]. Applied Sciences, 2020, 10(12): 4128. DOI: 10.3390/app10124128. [92] XIAO F, CHEN Y, HUA H X. Comparative study of the shock resistance of rubber protective coatings subjected to underwater explosion [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2): 021402. DOI: 10.1115/1.4026670. [93] GORDON S, ABIDI N. Cotton fibres: characteristics, uses and performance [M]. New York: Nova Science Publishers, 2017. [94] GORE P M, KANDASUBRAMANIAN B. Functionalized aramid fibers and composites for protective applications: a review [J]. Industrial and Engineering Chemistry Research, 2018, 57(49): 16537–16563. DOI: 10.1021/acs.iecr.8b04903. [95] 熊祖钊, 白春华. 燃料空气炸药武器威力评价指标研究 [J]. 火炸药学报, 2002, 25(2): 19–22. DOI: 10.3969/j.issn.1007-7812.2002.02.008.XIONG Z Z, BAI C H. Study of fuel-air explosive weapon power evaluation indexes [J]. Chinese Journal of Explosives and Propellants, 2002, 25(2): 19–22. DOI: 10.3969/j.issn.1007-7812.2002.02.008. [96] 王峰, 杨志焕, 朱佩芳, 等. 高原冲击伤伤情特点的实验研究 [J]. 创伤外科杂志, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.WANG F, YANG Z H, ZHU P F, et al. Experimental study on characteristics of blast injury at high altitude [J]. Journal of Traumatic Surgery, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026. [97] 杨立云, 许鹏, 高祥涛, 等. 数字激光高速摄影系统及其在爆炸光测力学实验中的应用 [J]. 科技导报, 2014, 32(32): 17–21. DOI: 10.3981/j.issn.1000-7857.2014.32.002.YANG L Y, XU P, GAO X T, et al. Digital laser high-speed photography system and its application in photomechanical tests with blast loading [J]. Science and Technology Review, 2014, 32(32): 17–21. DOI: 10.3981/j.issn.1000-7857.2014.32.002. [98] 叶希洋, 苏健军, 姬建荣. 冲击波测试效应靶法综述 [J]. 兵器装备工程学报, 2019, 40(12): 55–61, 124. DOI: 10.11809/bqzbgcxb2019.12.012.YE X Y, SU J J, JI J R. Review of effect target method for shock wave measurement [J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 55–61, 124. DOI: 10.11809/bqzbgcxb2019.12.012. [99] BOUTILLIER J, CARDONA V, MAGNAN P, et al. A new anthropomorphic mannequin for efficacy evaluation of thoracic protective equipment against blast threats [J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 786881. DOI: 10.3389/fbioe.2021.786881. 期刊类型引用(9)
1. 刘正,聂建新,阚润哲,杨金想,谭彦威,郭学永,闫石. 铝粉燃烧对CL-20基混合炸药水下爆炸载荷特性的影响. 兵工学报. 2025(03): 169-178 . 百度学术
2. 赖志超,邓硕,秦健,迟卉,孟祥尧,文彦博,黄瑞源. 不同类型炸药近场水下爆炸下固支方板动态响应研究. 工程力学. 2024(11): 179-194 . 百度学术
3. 伍俊英,刘嘉锡,张晓舟,杨利军,李姚江,吴姣姣,陈朗. 低温下三组元固体推进剂燃烧波阵面变化规律实验研究. 推进技术. 2022(06): 379-384 . 百度学术
4. 阚润哲,聂建新,郭学永,闫石,焦清介,张韬. 不同铝氧比CL-20基含铝炸药深水爆炸能量输出特性. 兵工学报. 2022(05): 1023-1031 . 百度学术
5. 戴俊岩,饶国宁,杭祖圣,王成. CL-20分子印迹聚合物的构建及吸附特性分析. 安全与环境工程. 2022(05): 183-195 . 百度学术
6. 孙兴昀,李亮亮,陈元建,郑雄伟,李鑫,阮喜军,苗润源,刘韩辉,王娟娟. 大质量超高速金属破片实验技术研究进展. 兵器装备工程学报. 2021(01): 122-129 . 百度学术
7. 陈兴,周兰伟,李福明,王毅,李志文,韩斌. 爆炸深度对装药水下载荷的影响. 兵器装备工程学报. 2021(08): 79-84 . 百度学术
8. 吴星亮,徐飞扬,王旭,董卓超,马腾,罗一民,徐森,曹卫国,刘大斌. 含储氢材料的RDX基混合炸药能量输出特性. 含能材料. 2021(10): 964-970 . 百度学术
9. 荣吉利,赵自通,冯志伟,韦辉阳,潘昊,徐洪涛,辛鹏飞. 黑索今基含铝炸药水下爆炸性能的实验研究. 兵工学报. 2019(11): 2177-2183 . 百度学术
其他类型引用(10)
-