• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸冲击伤发生机制及防护材料研究进展

阮洪伟 范思宇 曾灵 蒋建新 张安强

刘明君, 李展, 谢伟, 尹青, 曾丹, 张亚栋, 周亭. 一种新型危险品仓库结构设计及其安全距离[J]. 爆炸与冲击, 2023, 43(4): 045901. doi: 10.11883/bzycj-2022-0224
引用本文: 阮洪伟, 范思宇, 曾灵, 蒋建新, 张安强. 爆炸冲击伤发生机制及防护材料研究进展[J]. 爆炸与冲击, 2024, 44(12): 121413. doi: 10.11883/bzycj-2024-0197
LIU Mingjun, LI Zhan, XIE Wei, YIN Qing, ZENG Dan, ZHANG Yadong, ZHOU Ting. A novel hazard warehouse and its safety separation distance[J]. Explosion And Shock Waves, 2023, 43(4): 045901. doi: 10.11883/bzycj-2022-0224
Citation: RUAN Hongwei, FAN Siyu, ZENG Ling, JIANG Jianxin, ZHANG Anqiang. Research progress on the mechanism of explosion impact injury and protective materials[J]. Explosion And Shock Waves, 2024, 44(12): 121413. doi: 10.11883/bzycj-2024-0197

爆炸冲击伤发生机制及防护材料研究进展

doi: 10.11883/bzycj-2024-0197
基金项目: 国家重点研发计划(2020-JCJQ-ZD-254-05);陆军特色医学中心人才创新能力培养计划(ZXYZZKY03);陆军军医大学青年培育项目(2023XQN48)
详细信息
    作者简介:

    阮洪伟(1995- ),男,博士,助理研究员,ruanhw0519@tmmu.edu.cn

    通讯作者:

    张安强(1985- ),男,博士,副研究员,zhanganqiang@tmmu.edu.cn

  • 中图分类号: O389

Research progress on the mechanism of explosion impact injury and protective materials

  • 摘要: 爆炸冲击伤是我国面临的重大公共卫生问题,呈现高发、群发、难防的特点,并且危重伤多,感染发生率高,诊治难度大。对爆炸冲击伤施以有效的防护胜过任何最可靠的救治。爆炸冲击伤防护是涉及医学、材料学、爆炸冲击力学等多学科的复杂问题,需要建立起爆炸冲击波传播、伤情评估、材料设计制备及材料衰减性能评测等方面的关系。基于此,本文从爆炸冲击波的产生、传播及爆炸冲击伤的发生机制出发,介绍了肺部、颅脑爆炸伤致伤机制,给出了不同程度的肺部、颅脑冲击伤的损伤力学指标,并系统地综述了爆炸冲击伤防护材料的研究现状及进展,讨论了不同材料的防护机理,重点针对目前广泛使用的爆炸冲击波防护材料,如多孔材料、水凝胶、聚脲等进行综述。此外,针对防护材料衰减爆炸冲击波性能评估方法不统一的问题,对材料衰减爆炸冲击波性能,如生物评估法、引线测试法等评估方法进行了全面的调研并分析了各种评估方法的优缺点。最后展望了在爆炸冲击波防护性能评测、动物爆炸冲击伤伤情和材料防护性能与人员防护之间的尺度关系、材料力学指标与防护性能之间的关系等方面的发展趋势。本文可为人员爆炸冲击伤防护材料的设计制备、应用和测试提供技术、理论参考。
  • 炸药库、火药库、油气库、弹药库等危险品仓库在雷电、火灾、武器打击等外界作用下,库内储存的危险品易发生爆炸,引发严重的安全事故。“8•12天津滨海新区爆炸事故”导致165人死亡,798人受伤,直接经济损失达70亿元[1];俄乌冲突中,俄军新卡霍夫卡军火库被乌军击中并发生爆炸,导致严重的人员伤亡[2]。为确保库房发生爆炸时周围人员和环境的安全,充分利用建设场地的地形地貌并预留充足的安全距离,是建设危险品仓库的首要考量[3]

    根据不同的结构形式,典型的危险品仓库可分为地面库、地下库和覆土库[4-8]3类。对各类型危险品仓库的安全距离已有广泛研究,并取得了丰富的成果。文献[4]中指出,地面库强度低,需与防护土堤等防护设施配合建设。地面库不能有效限制爆炸冲击波的传播和爆炸破片的飞散[4],且不得存储有整体性爆炸风险的爆炸物[5]。Park等[9]基于理论分析和数值计算比较了地面库和地下库的安全距离,指出地下库的最小库间安全距离比地面库小62.8%。

    地下库发生爆炸时会引发强烈地震动,导致相邻库室墙壁剥落并产生破片抛掷,引发殉爆[5]。云庆[10]、刘桂英等[11]以相邻库室墙壁不发生剥落为准则,对地下库覆盖层的临界厚度进行了研究,得到了相邻库室的最小间距。Sugiyama等[12-18]通过缩尺试验和数值计算的方法对地下库爆炸产生的冲击波进行了研究,分析了库房洞室长径比、口部尺寸及装药形状对冲击波的传播和安全距离的影响。Wu等[19]通过数值计算的方法对不同围岩条件下的地下库内爆炸进行了研究,提出了估算地下库周围损伤区域、相邻库室之间安全间距和安全埋置深度的经验公式。

    由于建设方便、费效比优良,覆土库在危险品仓库建设中广泛使用。Weals[20]对覆土库开展了4组大比例爆炸试验,得到了防止两侧及后方库房相邻库房殉爆的最小库间距离和结构破片的飞散范围。Oswald[21]认为,覆土库爆炸破片的飞散范围与药室比和库房的材料有关。李铮等[22]通过缩尺试验,研究了丘陵地区覆土危险品仓库爆炸冲击波的传播规律,指出了该型库房爆炸时冲击波流场分布的方向性。Kim等[23]、荣凯等[24]分别通过缩尺试验和数值计算研究了覆土库爆炸产生的冲击波的衰减规律,表明覆土可在一定程度上限制爆炸冲击波向库房两侧及后方传播,库房两侧及后方的超压峰值、冲量小于地面库爆炸。渡辺萌奈等[25]通过1∶10和1∶20的小比例缩尺爆炸试验对覆土库的爆炸破片进行研究,发现覆土越厚爆炸破片的飞散范围越小。

    现有研究结果表明,危险品仓库的安全距离受其结构形式的影响很大:一般情况下,地面库安全距离大[5];地下库多修建于山体中,可有效减小安全距离,但其建设受到地形地貌的限制大[4-5];覆土库适用范围广,其爆炸冲击波的流场分布具有方向性,与地面库相比能在一定程度上减小两侧及后方的安全距离,但减小程度有限,且破片的方向性不强[5]。虽然上述3种形式的库房已被广泛研究和应用,但仍难以满足在相对平坦开阔场地且安全距离受限环境中的建设需求。

    为解决此问题,本文中借鉴地下库和覆土库的结构特征和研究成果,针对一种新的结构形式的危险品仓库,开展3组缩尺模型野外爆炸试验,研究仓库各组成部分对爆炸冲击波传播和爆炸破片飞散的影响,拟合冲击波超压峰值随比例距离的衰减公式,给出新型危险品仓库的爆炸冲击波安全距离,以期为平坦场地、安全距离受限的条件下修建危险品仓库提供解决方案。

    借鉴地下库和覆土库爆炸冲击波和破片具有方向性的特点,新型危险品仓库的基本设想是:修建一种地下浅埋式危险品仓库,库房前端朝向允许泄爆方向,库房主体上方两侧和后方一定范围内堆填适当高度的土壤,以限制库房爆炸对两侧及后方的影响,减小库房两侧及后方的安全距离。进一步在主体上方堆土中设置一块钢筋混凝土板(称为分配板),使更多的堆土能够参与抑制爆炸冲击波传播,以期分散库房爆炸产生的冲击波荷载。由此,新型危险品仓库主要由浅埋式库房主体、顶部堆土(heaped-up earth cover, HEC)和钢筋混凝土分配板3部分组成,如图1所示。

    图  1  新型危险品仓库的结构形式
    Figure  1.  Structure of a novel hazards warehouse

    库房主体的断面形式为直墙拱,口部朝向开阔方向(泄爆方向),前墙外侧少量堆土或不堆土。顶部堆土前低后高,截面形状为梯形,梯形上底位于装药中心后侧。分配板前小后大呈梯形,底面与地面平齐,前端在装药中心以前,后端在库房主体之后,左右两端完全覆盖库房主体。前墙外侧设置运输通道,用于库内危险品的运输。

    为验证新型库房设计的合理性,研究分配板和库房主体强度对爆炸冲击波、爆炸破片的影响,制作了3组缩尺模型。缩尺模型各组成部分如图2所示。库房主体强度分为“强”“弱”两种。“强库房”为钢筋混凝土结构,采用C30混凝土和HRB 400级钢筋;库房主体墙壁厚0.10 m,配筋率0.8%,前墙为砌体结构;“弱库房”为波纹钢结构。分配板为钢筋混凝土结构,尺寸为3.1 m×2.5 m/5.5 m×0.15 m(长×宽(前/后)×厚),采用C80混凝土和HRB 400级钢筋,配筋率1.0%。

    图  2  试验模型各组成部分
    Figure  2.  Components of test models

    3组试验模型分别编号为模型1、2、3。3组试验模型顶部堆土的高度、范围、土质等情况均一致,模型1为“弱库房”结构,无分配板;模型2设置分配板,其余情况同模型1;模型3为“强库房”结构,设置分配板。库房主体、分配板及顶部堆土的尺寸及相对位置如图3所示。图4为库房模型现场照片,模型3分配板埋在土中,分配板不可见。

    图  3  试验模型及顶部堆土尺寸(单位:m)
    Figure  3.  Size of the test models and heaped-up earth cover (unit: m)
    图  4  试验模型现场照片
    Figure  4.  Photos of the test models

    根据新型危险品仓库的设计储药量和爆炸相似律[26],各缩尺试验模型的装药量均为156 kg,采用柱状TNT装药,装药底面中心与库房主体的地面中心重合,如图5所示。采用8#电雷管起爆及120 g传爆药柱传爆。

    图  5  试验模型装药情况
    Figure  5.  Charging of test models

    对比试验模型1~2,研究分配板对爆炸冲击波传播、爆炸破片飞散的影响;对比试验模型2和模型3,研究库房主体强度对爆炸冲击波传播、爆炸破片飞散的影响。试验工况如表1所示。

    表  1  缩尺试验模型情况
    Table  1.  Cases of scaled test model
    模型库房主体材料分配板装药量/kg
    1波纹钢156
    2波纹钢156
    3钢筋混凝土156
    下载: 导出CSV 
    | 显示表格

    试验测量了库房周围的地面冲击波压力分布,并记录了3组模型试验的爆炸过程。

    地面冲击波压力测点布置如图6所示,以模型的开口朝向为0°方向,沿逆时针在0°、30°、60°、90°、135°、180°方向分别布置冲击波压力测点。压力传感器采用PCB 113型,如图7所示,传感器测量面与地面平齐,量程范围均为0 ~ 0.69 MPa。

    图  6  测点和高速摄像机布置
    Figure  6.  Locations of gauges and high-speed camera
    图  7  冲击波超压传感器
    Figure  7.  Setup of shock wave overpressure sensor

    采用IX黑白高速摄像机记录爆炸过程,拍摄速度为10000 s−1。使用徕卡FlexLine plus全站仪统计爆炸破片的飞散角度和飞散距离。

    图8给出了高速摄像机记录的试验模型爆炸过程。可将爆炸过程分为4个阶段。(1)起爆阶段,即炸药起爆至爆轰产物冲出库房口部阶段。炸药起爆后,爆轰产物从库房前端冲出,受运输通道阻挡向上传播,并出现火光。以炸药起爆时刻为0 ms,模型1、2、3出现火光的时刻分别为0.4、0.4、1.6 ms。(2)前墙破坏阶段,即爆轰产物冲出库房口部至前墙破坏阶段。在炸药的爆炸作用下,库房前墙迅速破坏,爆轰产物泄出并形成火球,伴有冲击波从库房前墙处泄出。模型1、2、3出现火球的时刻分别为1.4、1.4、2.7 ms。(3)结构破坏阶段,即前墙破坏至顶部堆土开始掀起阶段。在爆炸荷载作用下,库房主体发生破坏并产生结构破片,顶部堆土向上掀起,堆土和破片向前、向上飞散。此阶段可以清晰地观察到冲击波呈椭球形向外传播,椭球球心位于前墙处,冲击波从顶部堆土上方、两侧绕射至库房后侧。试验模型1、2、3顶部堆土开始掀起的时刻分别为47.7、54.2、72.8 ms,顶部堆土开始掀起时,冲击波波阵面已在高速摄像机画面外。(4)破片、堆土飞散阶段,即顶部堆土掀起至堆土、破片落地阶段。此阶段结构破片向前飞散,顶部堆土从前至后被掀起、抛洒。

    图  8  各试验模型高速摄像图像
    Figure  8.  High-speed camera photos of the three tests

    爆炸过程中,3组试验模型的爆炸冲击波均以库房前墙处为中心向外传播,爆炸破片向前、向上飞散,说明本文中提出的库房形式改变了爆炸冲击波传播和破片飞散的方向,达到了定向泄爆的目的。

    提取3组试验模型中各测点的冲击波超压峰值,并与TNT在软质地面爆炸的经验公式[27]计算结果进行对比。经验公式[27]为:

    p=0.102Z+0.399Z2+1.26Z3
    (1)

    式中:p为超压峰值,MPa;Z为比例距离,m/kg1/3

    试验数据与对比结果如图9所示。由图9可知,试验测得的超压峰值随比例距离的增大呈对数衰减,这与经验公式计算结果趋势一致,主要由TNT爆炸产生的冲击波在空气中扩散衰减造成的。对比不同方向的超压峰值发现,同一比例距离处超压峰值随角度增加而减小。例如,比例距离为1.39 m/kg1/3处,模型1、2、3在180°方向的超压峰值分别为0°方向的23%、12%、9%,比例距离为13.23 m/kg1/3处,模型1、2、3的超压峰值分别为0°方向的59%、43%、25%,说明爆炸冲击波传播过程具有明显的方向性。

    图  9  各试验模型超压峰值
    Figure  9.  Peak pressure of the three tests

    3组试验模型的爆炸破片均分布在库房前侧−90°~90°方向范围内,如图10所示。模型1的典型破片为4块波纹钢破片,其中3块分布在−30°~30°范围内,飞出较远的一块在45°方向;模型2的爆炸破片主要分布在−30°~30°范围内;模型3的爆炸破片集中分布在−60°~60°范围内。由此说明,3组试验模型爆炸破片的分布具有明显的方向性,符合定向泄爆的预期。

    图  10  爆炸破片分布图
    Figure  10.  Distribution of explosion debris

    对比各组试验模型的破片数量及分布范围发现,混凝土库房的破片数量和飞散距离远大于波纹钢库房,最大飞散比例距离达32.8 m/kg1/3,是模型1的2.5倍。这表明波纹钢材料延展性好,在库房内爆炸作用下形成的破片体积大、数量少,而钢筋混凝土材料延展性差,在爆炸荷载作用下,易形成大量破片。

    为定量研究新型危险品仓库爆炸冲击波的方向性及分配板、库房主体强度对冲击波传播的影响,对比3组试验模型在同一方向上的超压峰值,如图11所示。

    图  11  冲击波超压峰值、地面爆炸经验公式及拟合公式
    Figure  11.  Peak pressures, empirical formula and fitting functions of shock waves

    图11可知,在0° ~ 180°方向上,模型1测得的冲击波超压峰值均小于地面爆炸经验公式[27]的计算结果,且在135°和180°方向上更明显。如比例距离为2.78 m/kg1/3处,相较于地面爆炸经验公式[27]计算结果,模型1的超压峰值降低了54% ~ 76%。

    对比试验模型1、2各方向的冲击波超压峰值发现,在顶部堆土、库房强度等条件相同的情况下,分配板提高了模型2在0°、30°方向的超压峰值。比例距离为2.78 m/kg1/3处,模型2的超压峰值分别为64.42、72.04 kPa,相较于模型1的60.15、62.13 kPa分别高出了7%和16%;60°方向上,模型2与模型1的超压峰值相差不大,平均相差0.5%;90°方向上,比例距离大于2.04 m/kg1/3时,模型1、2的超压峰值平均相差不足2%;135°、180°方向上,模型2各测点的超压峰值相较于模型1明显更低,如比例距离为3.25 m/kg1/3处,模型2的超压峰值分别为19.55、17.65 kPa,分别是模型1的73%(26.68 kPa)和68%(26.11 kPa)。这表明分配板能够进一步增强库房的定向泄爆性能,显著降低了库房侧后方、正后方的超压峰值,减小了该方向的安全距离。分配板在库房爆炸作用下的运动变形是与爆炸冲击波传播强耦合的过程[28]:在爆炸作用下分配板向上运动并向后翻转,期间发生变形、破坏,但其结构响应与破坏远滞后于冲击波传播;当冲击波作用于分配板时,由于钢筋混凝土材料强度高、波阻抗大[27],分配板使更多的堆土能够参与抑制爆炸冲击波向四周扩散,起到了分散爆炸荷载的作用,阻挡冲击波向库房后方传播。

    对比试验模型2、3的超压峰值发现,钢筋混凝土库房主体可减小库房两侧、后方的冲击波超压峰值,135°和180°方向尤为明显。以180°方向为例,比例距离为2.78 m/kg1/3处,模型3的超压峰值为13.83 kPa,相较于模型2的23.04 kPa减小了40%;比例距离为7.19 m/kg1/3处,模型3的超压峰值为5.67 kPa,不足模型2超压峰值的50%(11.51 kPa)。这表明库房主体的结构和强度会影响冲击波传播,可归结于两方面因素:(1)相较于模型2,模型3库房主体强度更高,前墙(砌体)强度与库房主体其他部分(钢筋混凝土)强度相差较大,爆炸冲击波作用于库房主体时,前墙迅速破坏并发生泄爆,冲击波与爆轰产物从前墙泄出,从而减小了库房两侧及后方的超压峰值;(2)钢筋混凝土库房主体在破坏过程中能够消耗更多的爆炸冲击波能量,迟滞了库房前部上方覆土掀开的过程,从而降低了库房外侧的爆炸荷载。

    图11中各方向冲击波超压峰值随比例距离的衰减规律进行公式拟合,以超压峰值0.10、0.05和0.02 MPa作为冲击波对人员的重伤、轻伤和安全的毁伤阈值[29-30],绘制冲击波超压对人员的毁伤范围,如图12所示。

    图  12  各试验模型冲击波超压峰值等值线及对比
    Figure  12.  Isolines and comparison of peak pressures of the test models

    图12可知,模型1后方的冲击波安全距离显著小于地面爆炸经验公式[27]的计算结果。135°、180°方向上,冲击波对人员的安全距离分别为4.16和4.37 m/kg1/3,相较于地面爆炸经验公式[26]的计算值(8.38 m/kg1/3)分别减小50%和48%。这与浅埋式库房主体和顶部堆土形状有关:浅埋式库房主体限制了爆炸冲击波向两侧及后方传播;前低后高的堆土形式致使堆土前端强度弱、后端强度高,有利于冲击向前泄出,促进库房内爆炸的定向泄爆,显著减小库房90° ~ 180°方向的冲击波安全距离。

    对比试验模型1、2的冲击波安全距离,发现135°、180°方向上,模型2的冲击安全距离分别为3.38、3.07 m/kg1/3,相较于模型1的4.16和4.37 m/kg1/3分别减小了19%和30%;与地面爆炸经验公式[27]相比分别减小了60%和63%。由此说明,分配板能有效减小库房后方的冲击波安全距离。对比试验模型2、3的冲击波安全距离,发现135°、180°方向上,模型3的冲击波安全距离分别为2.40、1.91 m/kg1/3,较模型2的3.38和3.07 m/kg1/3分别减小了29%和38%;与地面爆炸经验公式[27]相比,分别减了71%和77%。由此说明,相较于波纹钢库房主体,钢筋混凝土结构显著减小了库房后方的冲击波安全距离。

    对比试验模型3与覆土库[24]的冲击波安全距离,发现135°、180°方向上,覆土库[24]的冲击安全距离分别为4.13、4.27 m/kg1/3,分别为模型3的1.72倍和2.24倍。由此说明,相较于覆土库[24],新型危险品仓库可使库房后方的冲击波安全距离减小约50%。

    针对一种新的结构形式的危险品仓库开展了缩尺模型试验,验证了新型结构形式的合理性,并分析了主体结构强度和钢筋混凝土分配板的影响,得到以下主要结论。

    (1)新型危险品仓库可有效实现定向泄爆,减小爆炸冲击波和破片对库房两侧及后方的影响范围,与地面爆炸经验公式[27]相比,库房两侧及后方的安全距离最大可减小77%;与覆土库[24]相比,库房两侧及后方的安全距离可减小约50%。

    (2)顶部堆土能有效限制爆炸冲击波的传播和爆炸破片的飞散,使爆炸破片集中分布在库房前侧,并减小冲击波在库房后方的安全距离。

    (3)分配板是新型仓库结构的重要组成部分,能够加强定向泄爆效果、减小库房前侧爆炸破片的飞散角度,并使库房后侧的安全距离进一步减小30%。

    (4)与波纹钢库房主体相比,钢筋混凝土库房主体后侧的安全距离最大可减小38%,但产生的破片数量更多,且向库房前端的飞散距离更远、分布范围更大。

  • 图  1  正常小鼠和爆炸冲击波击中后小鼠的脑和肺部

    Figure  1.  Brains and lungs of a normal rat and one hit by explosive shock waves

    图  2  人体头部及肺部冲击波超压耐受曲线[28]

    Figure  2.  Shock wave overpressure tolerance curves of human head and lung[28]

    表  1  常见的爆炸冲击波衰减性能测试方法[95-98]

    Table  1.   Common testing methods for attenuation performance of explosion shock waves[95-98]

    测试方法 特点 优点 缺点
    等效压力罐法[95] 依据实验现场安放的薄铁皮罐在爆炸后的毁伤状况,
    对冲击波威力进行评估
    成本低,操作简单,
    可测冲击波超压
    定量性不准确;
    适用近场超压
    生物评估法[96] 对生物实验体的受伤程度进行冲击波强度评估 直接有效 专业性强
    高速摄影法[97] 利用高速摄像机拍摄到的爆炸过程以及波阵面的运动过程,
    推算冲击波压力
    记录完整、直观 不准确
    存储测试法[98] 将引线、传感器、适配器和数据采集器集合为一个整体,
    能够独立采集、存储信息
    无需引线布置,
    测试精确
    设备昂贵,信息易丢
    引线测试法[98] 将传感器安装在测试现场,通过电缆将信号传输到仪表,
    最后使用计算机分析数据
    完整记录冲击波的
    传播情况,测量精确
    易受环境和电磁干扰,
    布设麻烦,成本高且易损坏
    下载: 导出CSV
  • [1] WANG J M. The features of explosive fragments induced injury and management [M]//FU X B, LIU L M. Advanced Trauma and Surgery. Singapore: Springer, 2017: 79–103. DOI: 10.1007/978-981-10-2425-2_6.
    [2] TSUKADA H, NGUYEN T T N, BREEZE J, et al. The risk of fragment penetrating injury to the heart [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105776. DOI: 10.1016/j.jmbbm.2023.105776.
    [3] DHARANI KUMAR S, SAMVEL R, ARAVINDH M, et al. Ballistic studies on synthetic fibre reinforced polymer composites and it’s applications: a brief review [J]. Materials Today: Proceedings, 2023. DOI: 10.1016/j.matpr.2023.03.679.
    [4] NEEDHAM C E, YOUNG L R, CHAMPION H R. Blast physics and biophysics [M]//CALLAWAY D W, BURSTEIN J L. Operational and Medical Management of Explosive and Blast Incidents. Cham: Springer, 2020: 19–33. DOI: 10.1007/978-3-030-40655-4_2.
    [5] 杨策, 蒋建新, 杜娟, 等. 天津港“8·12”特大爆炸事件对爆炸冲击伤诊治的警示 [J]. 中华诊断学电子杂志, 2016, 4(1): 30–32. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.009.

    YANG C, JIANG J X, DU J, et al. Vigilance and enlightenment from diagnosis and therapy of blast injury in the “8·12” giant explosion in Tianjin harbor [J]. Chinese Journal of Diagnostics (Electronic Edition), 2016, 4(1): 30–32. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.009.
    [6] 杨策, 蒋建新, 杜娟, 等. 2000年至2015年国内174起爆炸事故冲击伤诊治分析 [J]. 中华诊断学电子杂志, 2016, 4(1): 36–40. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.011.

    YANG C, JIANG J X, DU J, et al. Analysis of the current situation of diagnosis and therapy in Chinese severe explosion accidents over the past 15 years [J]. Chinese Journal of Diagnostics (Electronic Edition), 2016, 4(1): 36–40. DOI: 10.3877/cma.j.issn.2095-655X.2016.01.011.
    [7] 王正国. 原发肺冲击伤 [J]. 中华肺部疾病杂志(电子版), 2010, 3(4): 231–233. DOI: 10.3877/cma.j.issn.1674-6902.2010.04.001.

    WANG Z G. Primary blast lung injury [J]. Chinese Journal of Lung Diseases (Electronic Edition), 2010, 3(4): 231–233. DOI: 10.3877/cma.j.issn.1674-6902.2010.04.001.
    [8] 李向荣, 马翊闻, 李帅, 等. 爆炸冲击波峰值区域频率分布特性研究 [J]. 北京理工大学学报, 2019, 39(2): 125–130. DOI: 10.15918/j.tbit1001-0645.2019.02.003.

    LI X R, MA Y W, LI S, et al. Research on frequency distribution of peak area of blast shock wave [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 125–130. DOI: 10.15918/j.tbit1001-0645.2019.02.003.
    [9] BYKOVA N G, ZABELINSKII I E, IBRAGIMOVA L B, et al. Radiation characteristics of air in the ultraviolet and vacuum ultraviolet regions of the spectrum behind the front of strong shock waves [J]. Russian Journal of Physical Chemistry B, 2018, 12(1): 108–114. DOI: 10.1134/S1990793118010165.
    [10] ZHUO Z, LIU Z L. Mechanical mechanisms and simulation of blast wave protection [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 89–97. DOI: 10.1007/978-981-19-2856-7_5.
    [11] KHRISTOFOROV B D. Effect of properties of the source on the action of explosions in air and water [J]. Combustion, Explosion, and Shock Waves, 2004, 40(6): 714–719. DOI: 10.1023/B:CESW.0000048277.31127.06.
    [12] FRIEDLANDER F G. Propagation of a pulse in an inhomogeneous medium: EM-76 [R]. New York: New York University, 1955.
    [13] WANG X, DU J, ZHUANG Z, et al. Incidence, casualties and risk characteristics of civilian explosion blast injury in China: 2000–2017 data from the state Administration of Work Safety [J]. Military Medical Research, 2020, 7(1): 29. DOI: 10.1186/s40779-020-00257-5.
    [14] KOBAYASHI S, HENMI H. Dispersion of shock wave transmitted into non-uniform materials [C]//Proceedings of ASME 2017 Fluids Engineering Division Summer Meeting. Waikoloa: ASME, 2017. DOI: 10.1115/FEDSM2017-69501.
    [15] BANDAK F A, LING G, BANDAK A, et al. Injury biomechanics, neuropathology, and simplified physics of explosive blast and impact mild traumatic brain injury [J]. Handbook of Clinical Neurology, 2015, 127: 89–104. DOI: 10.1016/B978-0-444-52892-6.00006-4.
    [16] BEN-DOR G, IGRA O, ELPERIN T. Handbook of shock waves, three volume set [M]. New York: Academic, 2000.
    [17] SCOTT T. Primary blast lung injury [M]//BULL A M J, CLASPER J, MAHONEY P F. Blast Injury Science and Engineering: A Guide for Clinicians and Researchers. 2nd ed. Cham: Springer, 2023: 193–199. DOI: 10.1007/978-3-031-10355-1_18.
    [18] REICHENBACH T. Hearing damage through blast [M]//BULL A M J, CLASPER J, MAHONEY P F. Blast Injury Science and Engineering: A Guide for Clinicians and Researchers. 2nd ed. Cham: Springer, 2023: 209–216. DOI: 10.1007/978-3-031-10355-1_20.
    [19] MORLEY M G, NGUYEN J K, HEIER J S, et al. Blast eye injuries: a review for first responders [J]. Disaster Medicine and Public Health Preparedness, 2010, 4(2): 154–160. DOI: 10.1001/dmp.v4n2.hra10003.
    [20] OU Y, CLIFTON B A, LI J H, et al. Traumatic brain injury induced by exposure to blast overpressure via ear canal [J]. Neural Regeneration Research, 2022, 17(1): 115–121. DOI: 10.4103/1673-5374.314311.
    [21] ZHONG Q J. Heart blast injury [M]//WANG Z G, JIANG J X. Explosive Blast Injuries: Principles and Practices. Singapore: Springer, 2023: 349–355. DOI: 10.1007/978-981-19-2856-7_23.
    [22] TURÉGANO-FUENTES F, PÉREZ-DIAZ D, SANZ-SÁNCHEZ M, et al. Abdominal blast injuries: different patterns, severity, management, and prognosis according to the main mechanism of injury [J]. European Journal of Trauma and Emergency Surgery, 2014, 40(4): 451–460. DOI: 10.1007/s00068-014-0397-4.
    [23] CHAVKO M, WATANABE T, ADEEB S, et al. Relationship between orientation to a blast and pressure wave propagation inside the rat brain [J]. Journal of Neuroscience Methods, 2011, 195(1): 61–66. DOI: 10.1016/j.jneumeth.2010.11.019.
    [24] LOGAN N J, ARORA H, HIGGINS C A. Evaluating primary blast effects in vitro [J]. Journal of Visualized Experiments, 2017(127): 55618. DOI: 10.3791/55618.
    [25] RUBIO J E, UNNIKRISHNAN G, SAJJA V S S S, et al. Investigation of the direct and indirect mechanisms of primary blast insult to the brain [J]. Scientific Reports, 2021, 11(1): 16040. DOI: 10.1038/s41598-021-95003-9.
    [26] SUN Y L, QIAN X M, SHU C M, et al. Effects of explosion shock waves on lung injuries in rabbits [J]. Shock and Vibration, 2021, 2021: 6676244. DOI: 10.1155/2021/6676244.
    [27] 王正国. 爆炸伤概述 [J]. 野战外科通讯, 2004, 29(4): 1–4.
    [28] 王正国, 蒋建新. 爆炸冲击伤原理与实践 [M]. 北京: 人民卫生出版社, 2020.

    WANG Z G, JIANG J X. Explosive blast injury principles and practices [M]. Beijing: People’s Medical Publishing House, 2020.
    [29] 王鸿, 高俊宏, 张文娟, 等. 肺爆震伤的分子机制研究进展 [J]. 中华创伤杂志, 2020, 36(8): 749–754. DOI: 10.3760/cma.j.issn.1001-8050.2020.08.014.

    WANG H, GAO J H, ZHANG W J, et al. Research progress in molecular mechanism of blast lung injury [J]. Chinese Journal of Trauma, 2020, 36(8): 749–754. DOI: 10.3760/cma.j.issn.1001-8050.2020.08.014.
    [30] BARNETT-VANES A, SHARROCK A, EFTAXIOPOULOU T, et al. CD43Lo classical monocytes participate in the cellular immune response to isolated primary blast lung injury [J]. Journal of Trauma and Acute Care Surgery, 2016, 81(3): 500–511. DOI: 10.1097/TA.0000000000001116.
    [31] ELSAYED N M, ARMSTRONG K L, WILLIAM M T, et al. Antioxidant loading reduces oxidative stress induced by high-energy impulse noise (blast) exposure [J]. Toxicology, 2000, 155(1/2/3): 91–99. DOI: 10.1016/s0300-483x(00)00281-x.
    [32] WANG H, ZHANG W J, LIU J R, et al. NF-κB and FosB mediate inflammation and oxidative stress in the blast lung injury of rats exposed to shock waves [J]. Acta Biochimica et Biophysica Sinica, 2021, 53(3): 283–293. DOI: 10.1093/abbs/gmaa179.
    [33] SEITZ D H, PERL M, MANGOLD S, et al. Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils [J]. Shock, 2008, 30(5): 537–544. DOI: 10.1097/SHK.0b013e31816a394b.
    [34] NAKAGAWA A, OHTANI K, ARMONDA R, et al. Primary blast-induced traumatic brain injury: lessons from lithotripsy [J]. Shock Waves, 2017, 27(6): 863–878. DOI: 10.1007/s00193-017-0753-5.
    [35] NAKAGAWA A, MANLEY G T, GEAN A D, et al. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research [J]. Journal of Neurotrauma, 2011, 28(6): 1101–1119. DOI: 10.1089/neu.2010.1442.
    [36] SIMARD J M, PAMPORI A, KELEDJIAN K, et al. Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain [J]. Journal of Neurotrauma, 2014, 31(14): 1292–1304. DOI: 10.1089/neu.2013.3016.
    [37] DE LANEROLLE N C, HAMID H, KULAS J, et al. Concussive brain injury from explosive blast [J]. Annals of Clinical and Translational Neurology, 2014, 1(9): 692–702. DOI: 10.1002/acn3.98.
    [38] DANG B Q, CHEN W L, HE W C, et al. Rehabilitation treatment and progress of traumatic brain injury dysfunction [J]. Neural Plasticity, 2017, 2017: 1582182. DOI: 10.1155/2017/1582182.
    [39] 徐召溪, 徐国政. 爆炸冲击波致轻型颅脑损伤患者血脑屏障损伤机制及其与迟发性神经功能障碍的关系 [J]. 解放军医学杂志, 2016, 41(5): 425–429. DOI: 10.11855/j.issn.0577-7402.2016.05.15.

    XU Z X, XU G Z. Mechanism of blood-brain barrier impairment after mild traumatic brain injury caused by blast shock waves and its relationship with delayed nerve dysfunction [J]. Medical Journal of Chinese People’s Liberation Army, 2016, 41(5): 425–429. DOI: 10.11855/j.issn.0577-7402.2016.05.15.
    [40] 康越, 马天, 黄献聪, 等. 颅脑爆炸伤数值模拟研究进展: 建模、力学机制及防护 [J]. 爆炸与冲击, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.

    KANG Y, MA T, HUANG X C, et al. Advances in numerical simulation of blast-induced traumatic brain injury: modeling, mechanical mechanism and protection [J]. Explosion and Shock Waves, 2023, 43(6): 061101. DOI: 10.11883/bzycj-2022-0521.
    [41] CHAMPION H R, HOLCOMB J B, YOUNG L A. Injuries from explosions: physics, biophysics, pathology, and required research focus [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2009, 66(5): 1468–1477. DOI: 10.1097/TA.0b013e3181a27e7f.
    [42] PRAT N J, DABAN J L, VOIGLIO E J, et al. Wound ballistics and blast injuries [J]. Journal of Visceral Surgery, 2017, 154(sl): 9–12. DOI: 10.1016/j.jviscsurg.2017.07.005.
    [43] VAN DER WOERD J D, WAGNER M, PIETZSCH A, et al. Design methods of blast resistant façades, windows, and doors in Germany: a review [J]. Glass Structures and Engineering, 2022, 7(4): 693–710. DOI: 10.1007/s40940-022-00213-w.
    [44] 孔霖, 苏健军, 李芝绒, 等. 几种不同爆炸冲击波作用的能量谱分析 [J]. 火炸药学报, 2010, 33(6): 76–79. DOI: 10.3969/j.issn.1007-7812.2010.06.018.

    KONG L, SU J J, LI Z R, et al. Energy spectrum analysis of several kinds of explosive blast [J]. Chinese Journal of Explosives and Propellants, 2010, 33(6): 76–79. DOI: 10.3969/j.issn.1007-7812.2010.06.018.
    [45] PHILLIPS Y Y, MUNDIE T G, YELVERTON J T, et al. Cloth ballistic vest alters response to blast [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1988, 28(1): S149–S152. DOI: 10.1097/00005373-198801001-00030.
    [46] SINGH K, RAJ R, RAJAGOPAL A K, et al. Shock wave attenuation using sandwiched structures made up of polymer foams and shear thickening fluid [J]. Journal of Mechanical Science and Technology, 2023, 37(3): 1311–1316. DOI: 10.1007/s12206-023-0217-z.
    [47] JIA S Y, WANG C, XU W L, et al. Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea [J]. Defence Technology, 2024, 31: 179–191. DOI: 10.1016/j.dt.2023.06.013.
    [48] 孙建华, 李艳霞, 魏春荣, 等. 泡沫铁镍金属抑制瓦斯爆炸冲击波的实验研究 [J]. 功能材料, 2013, 44(10): 1390–1394. DOI: 10.3969/j.issn.1001-9731.2013.10.005.

    SUN J H, LI Y X, WEI C R, et al. Experimental study on the porous foam iron-nickel metal inhibition of explosion wave [J]. Journal of Functional Materials, 2013, 44(10): 1390–1394. DOI: 10.3969/j.issn.1001-9731.2013.10.005.
    [49] HU Z Q, SHAO J L, JIA S Y, et al. Propagation properties of shock waves in polyurethane foam based on atomistic simulations [J]. Defence Technology, 2024, 31: 117–129. DOI: 10.1016/j.dt.2023.01.020.
    [50] GAO Y Y, LALEVÉE J, SIMON-MASSERON A. An overview on 3D printing of structured porous materials and their applications [J]. Advanced Materials Technologies, 2023, 8(17): 2300377. DOI: 10.1002/admt.202300377.
    [51] BRANCH B, IONITA A, PATTERSON B M, et al. A comparison of shockwave dynamics in stochastic and periodic porous polymer architectures [J]. Polymer, 2019, 160: 325–337. DOI: 10.1016/j.polymer.2018.10.074.
    [52] KADER M A, HAZELL P J, BROWN A D, et al. Novel design of closed-cell foam structures for property enhancement [J]. Additive Manufacturing, 2020, 31: 100976. DOI: 10.1016/j.addma.2019.100976.
    [53] FARACI D, DRIEMEIER L, COMI C. Bending-dominated auxetic materials for wearable protective devices against impact [J]. Journal of Dynamic Behavior of Materials, 2021, 7(3): 425–435. DOI: 10.1007/s40870-020-00284-2.
    [54] WANG M Z, WU H Z, YANG L, et al. Structure design of arc-shaped auxetic metamaterials with tunable Poisson’s ratio [J]. Mechanics of Advanced Materials and Structures, 2023, 30(7): 1426–1436. DOI: 10.1080/15376494.2022.2033890.
    [55] TANCOGNE-DEJEAN T, KARATHANASOPOULOS N, MOHR D. Stiffness and strength of hexachiral honeycomb-like metamaterials [J]. Journal of Applied Mechanics, 2019, 86(11): 111010. DOI: 10.1115/1.4044494.
    [56] GAO Y, WEI X Y, HAN X K, et al. Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism [J]. International Journal of Solids and Structures, 2021, 233: 111232. DOI: 10.1016/j.ijsolstr.2021.111232.
    [57] PLEWA J, PŁOŃSKA M, LIS P. Investigation of modified auxetic structures from rigid rotating squares [J]. Materials, 2022, 15(8): 2848. DOI: 10.3390/ma15082848.
    [58] BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.114907.
    [59] FÍLA T, ZLÁMAL P, JIROUŠEK O, et al. Impact testing of polymer-filled auxetics using split Hopkinson pressure bar [J]. Advanced Engineering Materials, 2017, 19(10): 1700076. DOI: 10.1002/adem.201700076.
    [60] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [61] JIN X C, WANG Z H, NING J G, et al. Dynamic response of sandwich structures with graded auxetic honeycomb cores under blast loading [J]. Composites Part B: Engineering, 2016, 106: 206–217. DOI: 10.1016/j.compositesb.2016.09.037.
    [62] YANG S, QI C, WANG D, et al. A comparative study of ballistic resistance of sandwich panels with aluminum foam and auxetic honeycomb cores [J]. Advances in Mechanical Engineering, 2013, 2013: 589216. DOI: 10.1155/2013/589216.
    [63] ZHANG J J, LU G X, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review [J]. Composites Part B: Engineering, 2020, 201: 108340. DOI: 10.1016/j.compositesb.2020.108340.
    [64] MAGNUS D, SORY D R, LEE J, et al. Study of soft material blast mitigation effects using a shock tube [J]. AIP Conference Proceedings, 2020, 2272(1): 040009. DOI: 10.1063/12.0001017.
    [65] SUN J Y, ZHAO X H, ILLEPERUMA W R K, et al. Highly stretchable and tough hydrogels [J]. Nature, 2012, 489(7414): 133–136. DOI: 10.1038/nature11409.
    [66] NI J H, LIN S T, QIN Z, et al. Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly [J]. Matter, 2021, 4(6): 1919–1934. DOI: 10.1016/j.matt.2021.03.023.
    [67] LIU J, LIN S T, LIU X Y, et al. Fatigue-resistant adhesion of hydrogels [J]. Nature Communications, 2020, 11(1): 1071. DOI: 10.1038/s41467-020-14871-3.
    [68] FAN H L, WANG J H, GONG J P. Barnacle cement proteins-inspired tough hydrogels with robust, long-lasting, and repeatable underwater adhesion [J]. Advanced Functional Materials, 2021, 31(11): 2009334. DOI: 10.1002/adfm.202009334.
    [69] MATSUDA T, NAKAJIMA T, GONG J P. Fabrication of tough and stretchable hybrid double-network elastomers using ionic dissociation of polyelectrolyte in nonaqueous media [J]. Chemistry of Materials, 2019, 31(10): 3766–3776. DOI: 10.1021/acs.chemmater.9b00871.
    [70] MATSUDA T, KAWAKAMI R, NAMBA R, et al. Mechanoresponsive self-growing hydrogels inspired by muscle training [J]. Science, 2019, 363(6426): 504–508. DOI: 10.1126/science.aau9533.
    [71] LI T, ZHANG C, XIE Z N, et al. A multi-scale investigation on effects of hydrogen bonding on micro-structure and macro-properties in a polyurea [J]. Polymer, 2018, 145: 261–271. DOI: 10.1016/j.polymer.2018.05.003.
    [72] ZHANG L, WANG Y T, WANG X, et al. Investigation on the influence mechanism of polyurea material property on the blast resistance of polyurea-steel composite plate [J]. Structures, 2022, 44: 1910–1927. DOI: 10.1016/j.istruc.2022.09.001.
    [73] CHU D Y, WANG Y G, YANG S L, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate [J]. Defence Technology, 2023, 19: 35–51. DOI: 10.1016/j.dt.2021.11.010.
    [74] ZHANG P, WANG Z J, ZHAO P D, et al. Experimental investigation on ballistic resistance of polyurea coated steel plates subjected to fragment impact [J]. Thin-Walled Structures, 2019, 144: 106342. DOI: 10.1016/j.tws.2019.106342.
    [75] 冯加和, 董奇, 张刘成, 等. 聚脲弹性体在爆炸防护中的研究进展 [J]. 含能材料, 2020, 28(4): 277–290. DOI: 10.11943/CJEM2019135.

    FENG J H, DONG Q, ZHANG L C, et al. Review on using polyurea elastomer for enhanced blast-mitigation [J]. Chinese Journal of Energetic Materials, 2020, 28(4): 277–290. DOI: 10.11943/CJEM2019135.
    [76] LEE J, JING B B, PORATH L E, et al. Shock wave energy dissipation in catalyst-free poly (dimethylsiloxane) vitrimers [J]. Macromolecules, 2020, 53(12): 4741–4747. DOI: 10.1021/acs.macromol.0c00784.
    [77] 郭国吉, 陈彩英, 王向明, 等. 聚脲弹性体防护材料的研究进展 [J]. 中国表面工程, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.

    GUO G J, CHEN C Y, WANG X M, et al. Research progress of polyurea elastomer protective materials [J]. China Surface Engineering, 2021, 34(6): 1–20. DOI: 10.11933/j.issn.1007-9289.20210602001.
    [78] HARIS A, LEE H P, TAN V B C. An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads [J]. Defence Technology, 2018, 14(1): 12–18. DOI: 10.1016/j.dt.2017.08.004.
    [79] IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea spray coatings: tailoring material properties through chemical crosslinking [J]. Progress in Organic Coatings, 2018, 123: 201–208. DOI: 10.1016/j.porgcoat.2018.07.005.
    [80] LIANG M Z, ZHOU M, LI X Y, et al. Synergistic effect of combined blast loads on UHMWPE fiber mesh reinforced polyurea composites [J]. International Journal of Impact Engineering, 2024, 183: 104804. DOI: 10.1016/j.ijimpeng.2023.104804.
    [81] ZHANG L, JI C, WANG X, et al. Strengthening and converse strengthening effects of polyurea layer on polyurea-steel composite structure subjected to combined actions of blast and fragments [J]. Thin-Walled Structures, 2022, 178: 109527. DOI: 10.1016/j.tws.2022.109527.
    [82] DE TOMASI TESSARI B, VARGAS N, DIAS R R, et al. Influence of the addition of graphene nanoplatelets on the ballistic properties of HDPE/aramid multi-laminar composites [J]. Polymer-Plastics Technology and Materials, 2022, 61(4): 363–373. DOI: 10.1080/25740881.2021.1988966.
    [83] PANDYA K S, NAIK N K. Analytical and experimental studies on ballistic impact behavior of carbon nanotube dispersed resin [J]. International Journal of Impact Engineering, 2015, 76: 49–59. DOI: 10.1016/j.ijimpeng.2014.09.003.
    [84] MYLVAGANAM K, ZHANG L C. Energy absorption capacity of carbon nanotubes under ballistic impact [J]. Applied Physics Letters, 2006, 89(12): 123127. DOI: 10.1063/1.2356325.
    [85] LAURENZI S, PASTORE R, GIANNINI G, et al. Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy [J]. Composite Structures, 2013, 99: 62–68. DOI: 10.1016/j.compstruct.2012.12.002.
    [86] MA D, WANG C, XU W L, et al. Investigate of shock wave mitigation performance of nano-carbon fillers modified epoxy composites [J]. Polymer Composites, 2022, 43(10): 7463–7472. DOI: 10.1002/pc.26833.
    [87] AMOS S E, YALCIN B. Hollow glass microspheres for plastics, elastomers, and adhesives compounds [M]. Amsterdam: William Andrew, 2015: 273–280. DOI: 10.1016/b978-1-4557-7443-2.18001-6.
    [88] WANG T M, CHEN S B, WANG Q H, et al. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead [J]. Materials and Design, 2010, 31(8): 3810–3815. DOI: 10.1016/j.matdes.2010.03.029.
    [89] DRDLOVÁ M, FRANK M. Mechanical properties of glass microsphere/epoxy foams modified by carbon nanotubes and nanosilica [J]. Journal of Scientific and Industrial Research, 2016, 75(6): 365–370.
    [90] SHIRA S, BULLER C. Mixing and dispersion of hollow glass microsphere products [M]//AMOS S E, YALCIN B. Hollow Glass Microspheres for Plastics, Elastomers, and Adhesives Compounds. Amsterdam: William Andrew, 2015: 241–271. DOI: 10.1016/B978-1-4557-7443-2.00011-6.
    [91] THORAT M, SAHU S, MENEZES V, et al. Shock loading of closed cell aluminum foams in the presence of an air cavity [J]. Applied Sciences, 2020, 10(12): 4128. DOI: 10.3390/app10124128.
    [92] XIAO F, CHEN Y, HUA H X. Comparative study of the shock resistance of rubber protective coatings subjected to underwater explosion [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(2): 021402. DOI: 10.1115/1.4026670.
    [93] GORDON S, ABIDI N. Cotton fibres: characteristics, uses and performance [M]. New York: Nova Science Publishers, 2017.
    [94] GORE P M, KANDASUBRAMANIAN B. Functionalized aramid fibers and composites for protective applications: a review [J]. Industrial and Engineering Chemistry Research, 2018, 57(49): 16537–16563. DOI: 10.1021/acs.iecr.8b04903.
    [95] 熊祖钊, 白春华. 燃料空气炸药武器威力评价指标研究 [J]. 火炸药学报, 2002, 25(2): 19–22. DOI: 10.3969/j.issn.1007-7812.2002.02.008.

    XIONG Z Z, BAI C H. Study of fuel-air explosive weapon power evaluation indexes [J]. Chinese Journal of Explosives and Propellants, 2002, 25(2): 19–22. DOI: 10.3969/j.issn.1007-7812.2002.02.008.
    [96] 王峰, 杨志焕, 朱佩芳, 等. 高原冲击伤伤情特点的实验研究 [J]. 创伤外科杂志, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.

    WANG F, YANG Z H, ZHU P F, et al. Experimental study on characteristics of blast injury at high altitude [J]. Journal of Traumatic Surgery, 2008, 10(6): 549–551. DOI: 10.3969/j.issn.1009-4237.2008.06.026.
    [97] 杨立云, 许鹏, 高祥涛, 等. 数字激光高速摄影系统及其在爆炸光测力学实验中的应用 [J]. 科技导报, 2014, 32(32): 17–21. DOI: 10.3981/j.issn.1000-7857.2014.32.002.

    YANG L Y, XU P, GAO X T, et al. Digital laser high-speed photography system and its application in photomechanical tests with blast loading [J]. Science and Technology Review, 2014, 32(32): 17–21. DOI: 10.3981/j.issn.1000-7857.2014.32.002.
    [98] 叶希洋, 苏健军, 姬建荣. 冲击波测试效应靶法综述 [J]. 兵器装备工程学报, 2019, 40(12): 55–61, 124. DOI: 10.11809/bqzbgcxb2019.12.012.

    YE X Y, SU J J, JI J R. Review of effect target method for shock wave measurement [J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 55–61, 124. DOI: 10.11809/bqzbgcxb2019.12.012.
    [99] BOUTILLIER J, CARDONA V, MAGNAN P, et al. A new anthropomorphic mannequin for efficacy evaluation of thoracic protective equipment against blast threats [J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 786881. DOI: 10.3389/fbioe.2021.786881.
  • 期刊类型引用(1)

    1. 解江,潘汉源,蒋逸伦,杨祥,李漩,郭德龙,冯振宇. 带剪切销抗爆容器定向泄压特性研究. 爆炸与冲击. 2024(07): 139-156 . 本站查看

    其他类型引用(0)

  • 加载中
推荐阅读
主体结构荷载可控的新型组合式防护结构(ⅱ):影响因素及设计理念
方秦 等, 爆炸与冲击, 2025
侵彻爆炸联合作用下超高性能混凝土遮弹层设计
程月华 等, 爆炸与冲击, 2025
近场近地爆炸下建筑柱爆炸荷载分布规律及简化模型
喻君 等, 爆炸与冲击, 2024
舱室内爆下舰船结构损伤的一种计算方法
伍星星 等, 爆炸与冲击, 2024
次生风险及其治理:危化品事故的结构性呈现与演化机理探究
王伯承, 郑州轻工业大学学报(社会科学版), 2023
基于优势演员-评论家算法的危险货物集装箱堆场安全堆存空间分配
沈阳 等, 上海海事大学学报, 2022
危险货物集装箱堆场安全设施设计
王艳庭 等, 集装箱化, 2022
The role of silicon in drug discovery: a review
Panayides, Jenny-Lee et al., RSC MEDICINAL CHEMISTRY, 2024
Risk identification and prioritization in china's new energy vehicle supply chain: an integrated tanimoto similarity and fuzzy-dematel approach
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2025
Peridynamic simulation of impact damage to 3d printedlattice sandwich structure
CHEN Yang et al., EXPLOSION AND SHOCK WAVES, 2024
Powered by
图(2) / 表(1)
计量
  • 文章访问数:  775
  • HTML全文浏览量:  214
  • PDF下载量:  176
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-10-20
  • 网络出版日期:  2024-10-22
  • 刊出日期:  2024-12-01

目录

/

返回文章
返回