• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

激波管模拟产生近场爆炸冲击波

张仕忠 李进平 康越 胡剑桥 陈宏

姚术健, 张舵, 郑监, 卢芳云, 于大鹏. 内部爆炸作用下钢箱结构变形规律性实验[J]. 爆炸与冲击, 2017, 37(5): 964-968. doi: 10.11883/1001-1455(2017)05-0964-05
引用本文: 张仕忠, 李进平, 康越, 胡剑桥, 陈宏. 激波管模拟产生近场爆炸冲击波[J]. 爆炸与冲击, 2024, 44(12): 121434. doi: 10.11883/bzycj-2024-0204
Yao Shujian, Zhang Duo, Zheng Jian, Lu Fangyun, Yu Dapeng. Experimental study of deformation of steel boxsubjected to internal blast loading[J]. Explosion And Shock Waves, 2017, 37(5): 964-968. doi: 10.11883/1001-1455(2017)05-0964-05
Citation: ZHANG Shizhong, LI Jinping, KANG Yue, HU Jianqiao, CHEN Hong. Generation of near-field blast wave by means of shock tube[J]. Explosion And Shock Waves, 2024, 44(12): 121434. doi: 10.11883/bzycj-2024-0204

激波管模拟产生近场爆炸冲击波

doi: 10.11883/bzycj-2024-0204
详细信息
    作者简介:

    张仕忠(1983- ),男,博士,高级工程师,zhangshizhong@imech.ac.cn

    通讯作者:

    李进平(1978- ),男,博士,高级工程师,lijinping@imech.ac.cn

  • 中图分类号: O389

Generation of near-field blast wave by means of shock tube

  • 摘要: 激波管可以在实验室环境下模拟爆炸产生冲击波,具有参数易于控制和测量手段准确多样等优势,在爆炸冲击效应的研究中被广泛应用。但与真实爆炸相比,尤其是近场爆炸,激波管产生的冲击波存在正压作用时间难以缩短、超压峰值难以提升的困难。通过对激波管运行理论和数值模拟分析发现:缩短正压作用时间的关键是让反射稀疏波尽快追上入射激波;提升超压峰值的关键是提高驱动气体的驱动能力。为此,设计了一种驱动段为锥形截面的激波管,使得反射稀疏波更快地追上入射激波,从而有效减小激波管设备长度并缩短正压作用时间;同时,采用正向爆轰驱动技术,利用化学能代替高压空气驱动提高驱动气体声速,在低爆轰初始压力下可以获得高的超压峰值。数值计算结果表明,在入射激波马赫数(MS=2.0)相同条件下,相对于等截面驱动方式,采用锥形截面驱动方式时,激波管长度可以减少近2/3,正压作用时间可以缩短近1/2。激波管实验结果表明,锥形截面驱动激波管产生的超压曲线满足近场爆炸冲击波形要求,并获得了超压峰值为64.7~813.4 kPa、正压作用时间为1.7~4.8 ms的爆炸冲击波波形。该研究可为近场爆炸冲击波致伤及装备防护效应评价实验提供参考。
  • 图  1  典型爆炸冲击波曲线(Friedlander波形)

    Figure  1.  Typical blast wave curve (Friedlander waveform)

    图  2  激波管模拟爆炸冲击波原理示意图

    Figure  2.  Schematic diagram of shock tube simulating blast wave

    图  3  常规激波管模拟爆炸冲击波参数关系曲线

    Figure  3.  Relations among parameters for conventional shock tube simulating blast wave

    图  4  激波管运行波系图

    Figure  4.  Wave diagrams for shock tube operating

    图  5  锥形截面驱动时激波管内压力分布和正压作用时间对比(MS=2.0)

    Figure  5.  The pressure and positive duration in the shock tube driven by conical section (MS=2.0)

    图  6  驱动段锥形截面正向爆轰驱动波系图

    Figure  6.  Diagram of wave system in shock tube driven by forward detonation with conical section

    图  7  不同时刻激波管内的压力和温度分布

    Figure  7.  Pressure and temperature distribution in the shock tube at different times

    图  8  爆轰驱动时不同位置压力曲线

    Figure  8.  The pressure at different positions in shock tube driven by forward detonation

    图  9  近场爆炸冲击波模拟激波管装置

    Figure  9.  The shock tube device for simulating near-field blast wave

    图  10  高压空气驱动实验结果

    Figure  10.  Experimental results driven by high-pressure air

    图  11  不同初始充气压力下正向爆轰驱动实验获得的典型超压曲线(n(H2)∶n(O2)=3∶1)

    Figure  11.  Typical overpressure-time histories obtained in positive detonation driving experiment at different initial inflation pressures and n(H2)∶n(O2)=3∶1

    图  12  空气驱动时数值计算结果比较

    Figure  12.  Comparison of numerical calculation results under high-pressure air driving

    图  13  正向爆轰驱动时数值计算结果比较

    Figure  13.  Comparison of numerical calculation results under forward detonation driving

    图  14  正向爆轰驱动中接触面高温气流对实验样品影响

    Figure  14.  Effect of high-temperature gas flow at the interface on the experimental samples in forward detonation driving experiment

    表  1  在H2和O2充气物质的量的比为3∶1和不同初始压力条件下正向爆轰驱动实验获得的超压峰值和正压作用时间

    Table  1.   Peak overpressure and positive pressure action time obtained in positive detonation driving experiment at different initial inflation pressures and n(H2)∶n(O2)=3∶1

    实验状态初始压力/MPa超压峰值/kPa正压作用时间/ms
    10.55490.44.7
    20.60539.54.8
    30.65624.24.8
    40.85813.44.4
    下载: 导出CSV
  • [1] ELDER G A, CRISTIAN A. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care [J]. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 2009, 76(2): 111–118. DOI: 10.1002/msj.20098.
    [2] TURNER R C, NASER Z J, LOGSDON A F, et al. Modeling clinically relevant blast parameters based on scaling principles produces functional & histological deficits in rats [J]. Experimental Neurology, 2013, 248: 520–529. DOI: 10.1016/j.expneurol.2013.07.008.
    [3] RISDALL J E, MENON D K. Traumatic brain injury [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1562): 241–250. DOI: 10.1098/rstb.2010.0230.
    [4] HERNANDEZ A, TAN C F, PLATTNER F, et al. Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes [J]. Molecular Brain, 2018, 11(1): 64. DOI: 10.1186/s13041-018-0408-1.
    [5] NING Y L, ZHOU Y G. Shock tubes and blast injury modeling [J]. Chinese Journal of Traumatology, 2015, 18(4): 187–193. DOI: 10.1016/j.cjtee.2015.04.005.
    [6] BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1973.
    [7] CLEMEDSON C J, CRIBORN C O. A detonation chamber for physiological blast research [J]. Journal of Aviation Medicine, 1955, 26(5): 373–381.
    [8] FILLER W S. Propagation of shock waves in a hydrodynamic conical shock tube [J]. Physics of Fluids, 1964, 7(5): 664–667. DOI: 10.1063/1.1711266.
    [9] STEWART J B, PECORA C. Explosively driven air blast in a conical shock tube [J]. Review of Scientific Instruments, 2015, 86(3): 035108. DOI: 10.1063/1.4914898.
    [10] COURTNEY A C, ANDRUSIV L P, COURTNEY M W. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects [J]. Review of Scientific Instruments, 2012, 83(4): 045111. DOI: 10.1063/1.3702803.
    [11] COURTNEY M W, COURTNEY A C. Note: a table-top blast driven shock tube [J]. Review of Scientific Instruments, 2010, 81(12): 126103. DOI: 10.1063/1.3518970.
    [12] CELANDER H, CLEMEDSON C J, ERICSSON U A, et al. The use of a compressed air operated shock tube for physiological blast research [J]. Acta Physiologica Scandinavica, 1955, 33(1): 6–13. DOI: 10.1111/j.1748-1716.1955.tb01188.x.
    [13] CULBERTSON D W. Description and performance of a conical shock tube nuclear air blast simulator [C]// Proceedings of the Seventh International Shock Tube Symposium. Toronto: University of Toronto Press, 1970: 396–409. DOI: 10.3138/9781487595876-024.
    [14] OPALKA K O, MARK A. The BRL-Q1D code: a tool for the numerical simulation of flows in shock tubes with variable cross-sectional areas: AD-A139631 [R]. Aberdeen: U. S. Army Ballistic Research Laboratory, 1986.
    [15] YU H R, GU J H, LI Z F, et al. Generation of blast wave by means of the normal shock tube [C]//Proceedings of the International Symposium on Shock Waves. Sendai, Japan, 1992: 897–900.
    [16] 王正国, 孙立英, 杨志焕, 等. 系列生物激波管的研制与应用 [J]. 爆炸与冲击, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.

    WANG Z G, SUN L Y, YANG Z H, et al. The design production and application of a series of bio-shock tubes [J]. Explosion and Shock Waves, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.
    [17] KIRK D R, FAURE J M, GUTIERREZ H, et al. Generation and analysis of blast waves from a compressed air-driven shock tube [C]//38th Fluid Dynamics Conference and Exhibit. Seattle: AIAA, 2008: 4777. DOI: 10.2514/6.2008-3847.
    [18] KLEINSCHMIT N N. A shock tube technique for blast wave simulation and studies of flow structure interactions in shock tube blast experiments [D]. Lincoln: The University of Nebraska, 2011.
    [19] NGUYEN T T N, WILGEROTH J M, PROUD W G. Controlling blast wave generation in a shock tube for biological applications [J]. Journal of Physics: Conference Series, 2014, 500: 142025. DOI: 10.1088/1742-6596/500/14/142025.
    [20] ANDREOTTI R, COLOMBO M, GUARDONE A, et al. Performance of a shock tube facility for impact response of structures [J]. International Journal of Non-Linear Mechanics, 2015, 72: 53–66. DOI: 10.1016/j.ijnonlinmec.2015.02.010.
    [21] LI X D, HU Z M, JIANG Z L. Numerical investigation of the effects of shock tube geometry on the propagation of an ideal blast wave profile [J]. Shock Waves, 2017, 27(5): 771–779. DOI: 10.1007/s00193-017-0716-x.
    [22] FRIEDLANDER F G. The diffraction of sound pulses Ⅰ: diffraction by a semi-infinite plane [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 186(1006): 322–344. DOI: 10.1098/rspa.1946.0046.
    [23] LUO K, WANG Q, LI J W, et al. Numerical modeling of a high-enthalpy shock tunnel driven by gaseous detonation [J]. Aerospace Science and Technology, 2020, 104: 105958. DOI: 10.1016/j.ast.2020.105958.
  • 期刊类型引用(7)

    1. 李锡锋,巨圆圆,杜志鹏,张磊,周春桂,李旭东. 基于量纲分析的两次内爆加载下舱室结构损伤规律研究. 兵器装备工程学报. 2022(03): 94-98 . 百度学术
    2. 焦立启,张权,李茂,张磊,张春辉. 典型舱内爆炸载荷对加筋板的毁伤特性. 中国舰船研究. 2021(02): 108-115+124 . 百度学术
    3. 余同希,朱凌,许骏. 结构冲击动力学进展(2010-2020). 爆炸与冲击. 2021(12): 4-64 . 本站查看
    4. 卢广照,姜春兰,毛亮,王在成. 薄钢板在CL-20基含铝炸药内爆载荷作用下的变形响应和工程预测. 兵工学报. 2020(08): 1509-1518 . 百度学术
    5. 陈鹏宇,侯海量,金键,李茂,朱锡,焦立启. 舰船舱内爆炸载荷简化载荷计算模型. 舰船科学技术. 2020(17): 22-29 . 百度学术
    6. 强洪夫,孙新亚,王广,黄拳章. 钢箱内部爆炸破坏的SPH数值模拟. 爆炸与冲击. 2019(05): 24-32 . 本站查看
    7. 李重情,穆朝民,许登科,张文清. 空腔长度对瓦斯爆炸冲击波传播影响研究. 采矿与安全工程学报. 2018(06): 1293-1300 . 百度学术

    其他类型引用(3)

  • 加载中
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
活性材料与炸药环状复合内爆的准静态压力计算方法
朱剑雷 等, 爆炸与冲击, 2025
动载荷下固体推进剂损伤演化原位成像研究
苑永祥 等, 爆炸与冲击, 2025
基于超材料的动态压剪复合加载实验新技术
任清非 等, 爆炸与冲击, 2024
管件内壁磁粒研磨时的磨粒动力学行为仿真及分析
吴传宗 等, 金刚石与磨料磨具工程, 2024
基于增材制造空心点阵结构的压缩变形研究
常超 等, 高压物理学报, 2022
应用于多层靶准等熵压缩实验的反积分方法
陶沛东 等, 高压物理学报, 2023
Preservation effects of photodynamic inactivation-mediated antibacterial film on storage quality of salmon fillets: insights into protein quality
Chen, Lu et al., FOOD CHEMISTRY, 2024
Non-monotonic effect of differential stress and temperature on mechanical property and rockburst proneness of granite under high-temperature true triaxial compression
GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2024
Microstructural evolution and mechanical properties of snow under compression
CONSTRUCTION AND BUILDING MATERIALS
Powered by
图(14) / 表(1)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  145
  • PDF下载量:  104
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-06-27
  • 修回日期:  2024-10-23
  • 网络出版日期:  2024-10-25
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回