Loading [MathJax]/jax/output/HTML-CSS/jax.js
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于头部运动学参数与脑损伤关系的颅脑创伤机制研究进展

张家瑞 杜智博 柳占立 庄茁

刘欣, 顾文彬, 蔡星会, 王涛, 刘建青, 王振雄, 沈慧铭. 圆柱形爆炸容器的内壁爆炸载荷[J]. 爆炸与冲击, 2022, 42(2): 022201. doi: 10.11883/bzycj-2021-0209
引用本文: 张家瑞, 杜智博, 柳占立, 庄茁. 基于头部运动学参数与脑损伤关系的颅脑创伤机制研究进展[J]. 爆炸与冲击, 2024, 44(12): 121411. doi: 10.11883/bzycj-2024-0221
LIU Xin, GU Wenbin, CAI Xinghui, WANG Tao, LIU Jianqing, WANG Zhenxiong, SHEN Huiming. Blast loads on the inner wall of cylindrical explosion containment vessel[J]. Explosion And Shock Waves, 2022, 42(2): 022201. doi: 10.11883/bzycj-2021-0209
Citation: ZHANG Jiarui, DU Zhibo, LIU Zhanli, ZHUANG Zhuo. Research progress on mechanism of craniocerebral trauma based on relationship between head acceleration and brain injury[J]. Explosion And Shock Waves, 2024, 44(12): 121411. doi: 10.11883/bzycj-2024-0221

基于头部运动学参数与脑损伤关系的颅脑创伤机制研究进展

doi: 10.11883/bzycj-2024-0221
基金项目: 国家重点研发计划(2020-JCJQ-ZD-254, 2022YFC3320500)
详细信息
    作者简介:

    张家瑞(1998- ),男,博士研究生,15862172533@163.com

    通讯作者:

    柳占立(1981- ),男,博士,教授,liuzhanli@mail.tsinghua.edu.cn

  • 中图分类号: O389

Research progress on mechanism of craniocerebral trauma based on relationship between head acceleration and brain injury

  • 摘要: 由于轻度创伤性脑损伤的复杂性和数据测量方式的局限性,直接根据脑组织损伤阈值来确定大脑的损伤状态往往并不可行。脑组织的损伤机制涉及复杂的力学、生物化学和生理学过程,且在不同个体之间存在显著差异。通过研究头部运动载荷与脑组织损伤之间的关系,研究者可以更好地理解不同类型的头部运动(如线加速度、角加速度、角速度)对脑组织的影响规律。这不仅有助于揭示颅脑创伤的力学机制,还为开发更有效的防护装具提供科学依据。但直接从头部的运动学测量评估损伤风险仍面临诸多挑战。本文详细总结和评述了与轻度创伤性脑损伤相关的冲击载荷及头部模型特点,通过综合分析头部运动学载荷与脑组织变形响应的关系,揭示包括线加速度、角加速度等载荷作用下脑组织的应力、应变响应规律,指出当前研究中存在的不足与局限性,为轻度创伤性脑损伤的预防、评估及治疗奠定理论和技术基础。
  • 爆炸容器(explosive containment vessels,ECVs)是一种能够将爆炸产生的冲击波、破片、有毒气体等限制在有限空间内,密切保护人员和实验仪器,回收爆炸试验碎片,并防止环境污染的限域装置。目前,爆炸容器已被广泛应用于民用和军用领域,特别在民用领域,随着近年来反恐战争形势的日益严峻,在公共场所,尤其是车站和机场,迫切需要轻质、高效的爆炸容器用于处理可疑爆炸物。

    爆炸容器内壁爆炸载荷的特征和分布规律是研究容器动态响应特性的基础,同时也是抗爆容器设计的重要参考量。爆炸容器内冲击波的传播是一个极其复杂的过程,不仅涉及到冲击波在空气中的传播、冲击波在容器内部的反射、追赶叠加,同时还涉及到容器壳体响应与冲击波之间的相互作用等多个方面[1-7]。霍宏发等[8]通过开展椭球封头圆柱形爆炸容器中心点爆炸试验研究发现,在封闭容器内,爆炸冲击载荷具有明显的脉冲激励和频域上的超带宽特征。饶国宁等[9]通过数值模拟方法对平板封头圆柱形爆炸容器的内壁爆炸载荷特征进行了研究,发现由于距离爆源最近,在中心爆炸加载条件下,容器的中环面和封头所受首次载荷最大,而由于汇集作用,封头处的后续压力与中环面处明显不同,其后续压力峰值高于第一个反射峰值。张亚军等[10]通过数值模拟方法对爆炸容器内部冲击波系的演化规律进行了研究,发现对确定尺寸和结构的爆炸容器,当药量不同时,容器内的爆炸场不具有相似性,即药量不同,爆炸所得冲击波系结构和演化过程差别较大。

    容器壳体在受内部径向冲击载荷作用下的动态响应特性一直是爆炸容器领域的研究热点,然而对于产生壳体响应的内壁爆炸载荷本身的大小、特征、分布规律及产生机理、载荷和与响应之间的关系等尚缺乏深入系统的研究,相关的试验研究成果更鲜有报道。本文中,通过试验与数值模拟相结合的方法,对圆柱形爆炸容器内炸药爆炸产生的内壁爆炸载荷进行系统的研究,为圆柱形爆炸容器的设计和安全评估提出建议。

    自行设计的爆炸容器如图1所示,为组合式圆柱形容器,中间圆柱壳部分厚22 mm,内径为0.8 m,长度为0.845 m(不含法兰),并对称开有多个圆孔(含1个起爆孔7个测试孔),开孔处焊接有加强管如图2所示,上下为相同的椭球形端盖,厚度为22 mm,椭球长轴0.8 m,长轴与短轴长度之比为2∶1,下端盖与圆柱壳部分焊接为一整体,上端盖与圆柱壳部分通过法兰上的螺栓连接。

    图  1  爆炸容器
    Figure  1.  Explosion containment vessel
    图  2  测点分布
    Figure  2.  Distribution of measurement points

    为研究装药在圆柱形爆炸容器内部爆炸时容器内壁所受载荷的特征及分布规律,在容器中选择了P1~P5共5个典型位置作为内壁反射超压测点,如图2所示。P1测点位于装药中心所在的容器中心横截面上,P2、P3、P4测点与P1具有相同的环向坐标,在轴向上与P1分别相距150、300、450 cm,P5测点位于椭圆形下端盖的极点处。测试系统由PCB公司的CA102B03型压力传感器、低噪声电缆和Elsys公司的TraNET PPC型一体式便携高速数据采集仪构成。

    为适应容器壳体为薄壁曲面的结构特点,消除内壁面超压测试过程中容器壳体的振动等对测试信号的寄生干扰,同时满足爆炸容器的密封要求,本文中对传感器的安装方式进行了设计,如图3所示。由图2图3(a)可以看出,加强管焊接在容器壁开孔位置,传感器通过自身的螺纹固定于基座上,传感器与基座之间放置的紫铜垫片主要起密封作用,防止容器内部的高压气体通过传感器和基座之间的螺纹间隙发生泄漏。基座通过后端的压紧螺栓固定于加强管内,橡胶垫圈可以有效地防止容器内部的高压气体通过基座与加强管之间的间隙发生泄漏。在环向上,基座与加强管之间具有微间隙,并隔有O型橡胶圈;在轴向上,基座与加强管之间隔了一层橡胶垫片,因此可以有效地抑制容器壳体的振动对反射冲击波信号的干扰,同时传感器本身具有加速度补偿功能,也能很好地抑制冲击和壳体振动等带来的噪声。图3(b)为传感器安装在基座上的实物,传感器敏感面相比基座端面凹陷约为0.6 mm,实际测试时,在传感器敏感面涂上一层约0.6 mm厚的耐高温油脂,以阻止爆炸瞬间产生的高温等对冲击波信号的干扰,而基座端面与容器内壁面平齐。

    图  3  传感器安装设计
    Figure  3.  Design of the sensor installation

    为确保容器在实验过程中不会发生塑性变形,采用逐步加载的方法,试验过程中,依次使用质量约27、64、100和150 g的球形压装TNT装药(不包括传爆药质量)进行试验,每种工况至少进行2次试验以确保测试结果的可靠性。

    图4展示了64 g规格球形装药在容器中心位置爆炸时两次重复试验的实测结果。图5展示了64 g装药容器中心爆炸时各测点所受载荷的完整时间历程曲线。由图4可知:(1)2次试验中,各测点的压力时程曲线一致性非常好,表明试验可重复性好,测试结果准确可靠;(2)容器内壁所受爆炸载荷具有明显的多脉冲特征,随着测点位置的变化,脉冲载荷的到达时间和大小表现出明显差异,即载荷在容器内壁的分布具有明显的不均匀性;(3)圆柱部分与端盖极点附近容器壳体所受载荷存在较大差异。

    图  4  装药为64 g的容器中心爆炸时各测点所受载荷压力曲线
    Figure  4.  Pressure curves of blast loading on each measurement point generated by a spherical charge of 64 g in the center of the container

    图5可知:(1)从整体上看,容器内壁爆炸载荷大致可分为3个作用阶段,即初始冲击阶段Ⅰ(第1个压力脉冲载荷)、冲击波在容器内壁与中心之间来回反射的冲击反射阶段Ⅱ以及最后容器内部压力趋于均匀的准静态阶段Ⅲ;(2)对于圆柱壳体部分,初始冲击阶段的持续时间在0.6~0.7 ms之间,随着与容器中心轴向距离的增大,大致呈减小趋势,对于椭球端盖极点,初始冲击阶段的持续时间约为0.22 ms;(3)对整个容器而言,从最早的第1个脉冲载荷到达容器壳体,即到达P1测点算起,经历约21 ms,容器内部压力整体趋于均匀,各测点压力虽仍处于震荡状态,但震荡幅度较小。

    图  5  典型冲击波压力曲线(第10次试验结果)
    Figure  5.  Typical pressure curves of shock waves (results of test 10)

    将压力时程曲线上具有相对完整且较为显著的上升和下降阶段的一次作用周期看作一个压力脉冲。由图5可知:(1)在容器中建立相对均匀的压力分布之前,P1~P4测点约受到3~4次脉冲作用,P5测点则受到多次脉冲作用,在初次脉冲作用后,对圆柱壳体部分,反射脉冲作用持续时间在1.2~2.4 ms之间,对椭球端盖极点位置,反射脉冲作用持续时间约10.7 ms;(2)对整个容器而言,第3次压力脉冲后,距离容器中心越远的测点,所测载荷曲线震荡越剧烈,特别是对于端盖极点位置,后续反射脉冲的峰值压力出现与圆柱壳部分所受峰值压力相当的情况,这表明越靠近容器中心,壳体所受载荷越早趋于均匀;(3)对于P1~P4测点,即容器圆柱壳部分,在经过1次反射之后,壳体所受脉冲载荷峰值压力整体呈衰减趋势,且衰减迅速,从第2个脉冲开始,载荷峰值压力基本在1 MPa以下,这与Duffey等[11]的研究结论一致,第1个脉冲具有比后续脉冲高得多的峰值压力,同时圆柱壳体不同部位所受脉冲载荷峰值压力之间的差异大幅减小,壳体受载荷作用相对均匀;(4)对于P5测点来说,即椭球端盖极点位置,第3个脉冲的峰值超压是最高的,这表明与圆柱壳体部分不同,椭球端盖极点位置所受峰值载荷并不由装药爆炸的直达冲击波作用产生。

    表1为不同装药条件下容器内壁各测点所受载荷峰值压力的统计结果(对P1~P4测点,即首脉冲的峰值压力),表中:装药位置“O”代表容器中心,经验计算值为根据林俊德公式(适用范围为比例距离ˉr满足条件0.2m/kg1/3ˉr3m/kg1/3)计算而来[12]表2为测点各次脉冲的比冲量统计,表中“1st”、“2nd”等分别代表脉冲到达的顺序,空格表示没有测到有效数据,比冲量值为单次脉冲正压段压力对时间的积分;表3为不同装药条件下容器内壁P1~P4测点所受载荷首脉冲正压作用时间统计,表中空格表示正压作用时间无法判读。由表1可知,容器内壁各测点所受爆炸载荷峰值压力实测结果与依据林俊德公式求解的经验计算值之间存在一定误差。为提高密闭爆炸容器内壁爆炸载荷经验计算公式的求解精度,根据表1中P1~P4测点首脉冲峰值压力实测结果对计算公式进行拟合。对于冲击波峰值超压Δp(单位为MPa),根据经典指数形式公式[3],设:

    表  1  峰值压力试验结果
    Table  1.  Test results of the peak pressure
    试验
    编号
    装药
    质量/g
    装药
    位置
    峰值压力/MPa
    P1测点P2测点P3测点P4测点P5测点
    实测计算误差实测计算误差实测计算误差实测计算误差实测计算误差
    126.7O2.642.110.251.831.780.031.081.180.090.610.730.162.720.347.05
    227.1O2.362.140.101.561.800.130.971.200.190.610.740.172.890.347.44
    326.7O2.412.110.141.611.780.090.981.180.170.590.730.193.010.347.91
    663.7O5.334.480.194.713.780.252.582.510.031.211.550.226.930.728.65
    764.8O5.424.550.194.833.830.262.772.550.091.231.570.2214.480.7318.87
    864.4O5.764.520.274.803.810.262.332.530.081.201.560.239.180.7311.67
    964.7O5.114.540.134.753.830.242.682.540.051.131.570.2814.260.7318.59
    1064.1O5.584.510.244.613.800.212.662.520.051.291.560.1713.410.7217.58
    15105.7O7.346.950.065.935.860.014.343.890.122.302.400.0419.071.1116.20
    16105.2O7.736.920.125.875.830.014.263.880.101.932.390.191.11
    21154.5O11.449.660.188.708.140.076.505.410.203.133.340.0613.771.557.90
    22154.3O11.499.650.199.108.130.126.145.400.143.333.33013.691.557.86
    23155.2O11.179.700.1510.288.170.265.995.430.102.853.350.1518.301.5510.78
    24154.2O10.889.640.139.928.130.225.865.400.092.913.330.131.55
    25154.7O11.529.670.199.238.150.135.765.410.062.913.340.131.55
    下载: 导出CSV 
    | 显示表格
    表  2  测点各次脉冲的比冲量
    Table  2.  Specific impulses of each pulse at each measurement points
    试验
    编号
    装药
    质量/g
    比冲量/(Pa∙s)
    P1测点P2测点P3测点P4测点P5测点
    1st2nd3rd1st2nd3rd4th1st2nd3rd4th1st2nd3rd4th1st2nd3rd4th5th6th
    126.7156481271385165107751238911711553393956253665
    227.113050801433581106611329194125564261167854093
    326.715064951206461109691198383105553941124249569
    663.726792200244108156221107203235155151139152104717304163862342
    764.82991662062271221492151262232131461271401388857725088777290
    864.42951752142561311541991161972531571291471327968818097758359
    964.72471542462651291752191072402131471141661477762015034633270
    1064.12921562122441211541901122102411471201531436960421882674270
    15105.741822347637919416929714217828120670103179339705199218883339
    16105.24102634953501851552861562573051848877162
    21154.5437211571485187158253356149281180265631272971594597954621084357
    22154.3593288559517211158290412161205280621412801944058665241071445
    23155.249425057746019514327036715228017524985972791624297134921054234
    24154.263032770747422514233536718930824810781256
    25154.75572946244612251623213571702971892369088246
    下载: 导出CSV 
    | 显示表格
    表  3  测点首脉冲正压作用时间
    Table  3.  Positive pressures action time of the first pulse at each measurement points
    试验
    编号
    正压作用时间/ms
    P1测点P2测点P3测点P4测点
    试验计算误差试验计算误差试验计算误差试验计算误差
    10.3490.3760.0720.3610.3960.0890.4390.4490.0220.5070.5200.024
    20.3450.3770.0840.4020.3970.0130.4650.4490.0350.5520.5200.061
    30.3570.3760.0510.4110.3960.0370.4530.4490.0090.5380.5200.035
    60.4040.4000.0100.4360.4210.0350.4390.4770.0800.5840.5520.057
    70.4060.4000.0140.4120.4220.0230.5160.4780.0810.5720.5530.034
    80.4030.4000.0070.4390.4220.0410.4750.4770.0050.5800.5530.049
    90.4110.4000.0270.3920.4220.0700.4830.4770.0120.5350.5530.032
    100.3970.4000.0080.3880.4210.0790.4480.4770.0610.5530.5530.001
    150.4200.4140.0140.4360.4360.0010.4780.4940.0330.572
    160.4100.4140.0100.4240.4360.0280.4960.4940.0040.572
    210.4200.4250.0130.4110.4480.0830.5210.5070.0270.588
    220.4550.4250.0700.4180.4480.0670.5280.5070.0410.588
    230.4380.4260.0290.3910.4480.1280.4820.5080.0500.588
    240.4320.4250.0160.4360.4480.0270.5060.5070.0030.588
    250.4140.4250.0270.4390.4480.0210.5060.5080.0030.588
    下载: 导出CSV 
    | 显示表格
    Δp=k(r/3m)α (1)

    式中:kα为待定系数;r为壳体与装药间的距离,m;m为装药质量,kg。将式(1)整理成如下形式:

    lnΔp=αln(r/3m)+lnk (2)

    y=lnΔpx=ln(r/3m)b=lnk,则有y=αx+b。利用Matlab自带的一元线性回归分析工具对表1中的试验结果进行拟合,图6为初步拟合结果。由图6可知,试验结果中存在奇异点,将奇异数据点剔除,重新进行拟合,直到残差图中奇异数据点不再出现,最终拟合结果如图7所示。此时,最终回归模型的回归系数α=2.9234,常数b=1.6102,判定系数R21=0.9873,统计量值F=7532,与F对应的概率P=9.3074e94,估计标准误差Sy=0.0064。由于概率P<0.05,判定系数非常接近1且估计标准误差较小,因此可以认为回归方程非常显著且拟合效果较好。因此有:

    图  6  测点P1~P4首脉冲峰值压力初步拟合结果
    Figure  6.  Preliminary fitting results of shock wave peak pressure of the first pulse from measurement points P1–P4
    图  7  测点P1~P4首脉冲峰值压力最终拟合结果
    Figure  7.  Final fitting results of shock wave peak pressures of the first pulse from measurement points P1–P4
    y=2.9234x+1.6102 (3)

    则拟合的冲击波反射超压峰值经验计算公式为:

    Δp=5ln(r/3m)2.920.74r/3m2.70 (4)

    根据表2所示试验结果,使用相同的方法拟合可得P1~P4测点首脉冲比冲量计算公式为:

    I=658.52(r/3m)1.3m1/30.74r/3m2.70 (5)

    表3可知,P1~P4测点首脉冲正压作用时间的林俊德公式计算结果与试验结果吻合较好,因此正压作用时间的计算公式为:

    ΔT=(r/3m)0.79m1/30.74r/3m2.70 (6)

    表13可知:(1)对容器圆柱壳体部分而言,P1~P4测点首脉冲正压作用时间与测点距爆源的距离以及装药量都成正相关,测点距爆源的距离对正压作用时间的影响稍大于装药量;(2)离爆源最近的P1测点所受载荷峰值压力及单次脉冲比冲量峰值最大,P1~P4测点比冲量的峰值并不总是在第1个脉冲出现,由于作用时间更长,后续第3或第4个脉冲的比冲量常常与第1个脉冲的比冲量基本相当甚至更大,又反射脉冲作用持续时间在1.2~2.4 ms之间,因此在确定容器圆柱壳体部分响应时不能简单地只考虑首脉冲的作用;(3)对整个容器而言,P5测点的峰值压力及单次脉冲比冲量峰值总是所有测点中最大的,且其峰值压力远大于林俊德公式计算值。将P5测点所受载荷峰值压力(p5)与相同条件下容器圆柱壳部分所受载荷峰值压力即爆心所在环面P1测点峰值压力(p1)进行对比,结果如表4所示。由表4可知:(1)P5测点所受载荷峰值压力测量结果的一致性并不理想,这主要与装药位置的设置误差以及椭球端盖极点附近内壁的不平整有关;(2)椭球端盖极点位置所受载荷峰值压力与容器圆柱壳部分所受载荷峰值压力的比值在1.03~2.79之间,因此在容器设计及安全评估时,端盖极点位置应予以足够重视。

    表  4  椭球端盖所受载荷峰值压力与圆柱壳体部分所受载荷峰值压力的比较
    Table  4.  Comparison between the peak pressure of the load on the ellipsoid end cap and the peak pressure of the load on the cylindrical shell
    试验编号装药质量/g装药位置试验/MPap5/p1试验编号装药质量/g装药位置试验/MPap5/p1
    p5p1p5p1
    126.7O2.722.641.0315105.7O19.077.342.47
    227.1O2.892.361.2316105.2O7.73
    326.7O3.012.411.2521154.5O13.7711.441.20
    663.7O6.935.331.3022154.3O13.6911.491.19
    764.8O14.485.422.6723155.2O18.3011.171.64
    864.4O9.185.761.5924154.2O10.88
    964.7O14.265.112.7925154.7O11.52
    1064.1O13.415.582.40
    下载: 导出CSV 
    | 显示表格

    图8展示了装药在容器中心爆炸时容器内壁所受载荷峰值压力随壳体与装药间轴向距离的变化。由图8可知:(1)对于容器圆柱壳体部分,随着与装药间轴向距离的增大,内壁所受载荷峰值压力逐渐减小,且随着装药质量的增大,峰值压力衰减的速率加快;(2)从整体来看,椭球端盖极点所受载荷峰值压力总是大于圆柱壳部分,且随着装药质量的增大,两者之间的差距呈先增大后减小的趋势。

    图  8  载荷峰值压力的分布
    Figure  8.  Distributions of the peak pressures of the blast loading

    表5给出了不同平均装药质量下准静态阶段容器内壁所受准静态压力的平均值统计结果。基于理想气体假设,容器内部准静态压力p为:

    表  5  容器内部准静态压力平均值
    Table  5.  Average quasi-static pressures inside the vessel
    平均装药质量/g准静态平均压力/MPa
    26.740.16
    64.040.36
    105.050.54
    154.590.65
    下载: 导出CSV 
    | 显示表格
    p=ρRT (7)

    式中:ρ为气体密度;R为理想气体参数,R=R0/M,R0为普适气体参数,M为气体摩尔质量;T为气体绝对温度。

    假设炸药爆炸以及容器内气体的温升是一个绝热过程,并且忽略容器内原有气体的质量以及假设炸药爆炸释放的能量全部用于容器内气体的温升,因此容器内气体的温升为:

    ΔT=EcVQ (8)

    式中:E为炸药爆炸释放的能量,Q为装药的TNT当量,cV为气体的定容比热容[5]

    容器内的准静态气体压力为:

    ps=ρsRTs=QV0R0M(T0+ΔT) (9)

    化简可得:

    ps=(R0E0McV+R0T0M)QV0 (10)

    式中:E0为单位质量TNT爆炸释放的能量,T0为气体初始温度即室温,V0为容器体积。由于对于固定的炸药,R0E0M、cV、T0均为常数,因此式(10)可化简成如下形式:

    ps=KQV0 (11)

    式中:K=R0E0McV+R0T0M

    上述分析表明,准静态阶段容器内壁所受准静态压力近似与装药量成正比,与容器体积成反比。对表5的试验结果进行拟合,本文中圆柱形爆炸容器的准静态压力有:

    ps=3.468mV00.036mV00.207 (12)

    为了说明圆柱形爆炸容器内壁所受载荷的特征和分布规律的形成机理,考虑到圆柱形爆炸容器相对于过P1测点的截面上下近似对称,图9给出了容器下半部分冲击波传播路径的示意图。同时利用LS-DYNA软件建立了容器1/8简化数值模型,如图10所示。图11为150 g球型TNT炸药在容器中心爆炸时数值模拟所得不同时刻容器内部爆轰场的压力云图。

    图  9  冲击波传播路径示意图
    Figure  9.  Schematic diagram of shock wave propagation path
    图  10  容器1/8简化数值模型
    Figure  10.  1/8 simplified numerical model of the cylindrical explosion containment vessel
    图  11  容器内部爆轰场压力云图
    Figure  11.  Pressure cloud map of the internal detonation field inside the vessel

    图9可知,装药爆炸后爆轰波向四周传播形成冲击波,一定时间后冲击波到达容器内壁面并同时开始发生反射,对应压力时程曲线上的初始冲击阶段;反射冲击波向容器内部传播,如图中路径1所示,冲击波到达P1测点后发生正反射,反射波沿原路向容器中心传播,一定时间后与从容器内壁相同环面反射的冲击波在容器中心位置相遇,随后改变方向,沿相反方向继续传播,如此重复;对于圆柱壳上的其他测点P2、P3、P4,类似图9中路径4所示,爆炸产生的直达冲击波首先到达测点,之后如路径2所示,从容器内壁其他位置反射的冲击波在容器内部相遇后再次向外反射到达测点,同时从容器内壁其他某些位置反射的冲击波在内壁、容器内部和椭球端盖之间来回的反射最后到达测点,反映在压力时程曲线上即表现为多个脉冲;由于随着传播距离的逐渐增大,冲击波逐渐衰减,因此随着与爆源之间轴向距离的增加,内壁所受载荷峰值压力(即首脉冲峰值压力)逐渐减小,P1~P4测点的后续几个脉冲峰值压力逐渐衰减,且明显小于第1个脉冲的峰值压力。

    对于椭球端盖极点位置的P5测点,如图9中路径8所示,爆炸产生的直达冲击波首先到达测点,之后如路径6、7所示,爆炸产生的第1道波与从容器内壁反射的冲击波在容器内部相遇并发生复杂的相互作用,如图11(a)所示。相遇后冲击波压力逐渐升高,当传播到椭球端盖时(图9A1A2位置),由于其入射角度大于马赫反射的临界角,因此会在端盖内壁面发生马赫反射,此时峰值压力再次增大,如图11(b)所示;马赫波沿端盖内壁传播同时逐渐向极点汇聚,如图11(c)、(d)所示,并最后在端盖极点附近完成汇聚,如图11(e)所示。汇聚后的冲击波会再次向端盖四周反射,如此反复,直到最后容器内部达到一种准静止状态。因此在P5测点的压力时程曲线上出现了许多个脉冲,且在冲击波完成汇聚时刻测点的压力达到最大值。

    通过对圆柱形爆炸容器内壁爆炸载荷的试验和数值模拟研究,可以得到以下结论。

    (1)容器内壁所受爆炸载荷具有明显的多脉冲特征,从整体上大致可分为3个作用阶段,即初始冲击阶段、冲击波在容器内壁和中心之间来回反射的冲击反射阶段以及最后容器内部压力趋于均匀的准静态阶段;对圆柱壳体部分,初始冲击阶段的持续时间在0.6~0.7 ms之间,对椭球端盖极点,初始冲击阶段的持续时间约为0.22 ms;对整个容器而言,经历约21 ms后,容器内部压力整体趋于均匀。

    (2)在内部建立均匀分布的压力之前,容器圆柱壳上的测点所受载荷包含3~4个显著的完整脉冲,初次脉冲作用后,反射脉冲作用持续时间在1.2~2.4 ms之间,且后续第3或第4个脉冲的比冲量常常与第1个脉冲的比冲量基本相当甚至更大,因此在确定容器圆柱壳体部分响应时不能简单地只考虑首脉冲的作用;椭球端盖极点处的P5测点受到多次脉冲的作用,在初次脉冲作用后,反射脉冲作用持续时间约10.7 ms,测点峰值压力及单次脉冲比冲量峰值总是所有测点中最大的,峰值压力最高可达圆柱壳所受最大压力的2.79倍,应予以足够重视。

    (3)对整个容器而言,P5测点所受载荷峰值压力最大,数值模拟表明,产生这种现象的主要原因是从容器内壁反射的冲击波与爆炸产生的第1道波在经过复杂的相互作用后于端盖内壁发生了马赫反射,马赫波沿端盖内壁传播并最终在端盖极点汇聚。

    (4)试验得到当比例距离为0.74r/3m2.70时,容器圆柱壳体所受载荷首脉冲的峰值压力、正压作用时间和比冲量的经验计算公式分别为Δp=5(r/3m)2.92ΔT=(r/3m)0.79m1/3I=658.52(r/3m)1.3m1/3;容器内的准静态气体压力经验计算公式为ps=3.468mV00.036mV00.207

  • 图  1  碰撞载荷下头部的加速度频谱

    Figure  1.  Acceleration spectrum of the head under collision loads

    图  2  可用于低频加速度测量的护齿器[39-40]

    Figure  2.  Mouthguards used for low-frequency acceleration measurement[39-40]

    图  3  爆炸载荷下头部的加速度频谱

    Figure  3.  Acceleration spectrum of the head under collision loads

    图  4  脑组织剪切模量的应变率依赖性[59]

    Figure  4.  Strain rate dependence of shear modulus of brain tissue[59]

    图  5  脑组织的非线性应力-应变关系[59]

    Figure  5.  Nonlinear stress-strain relationship of brain tissue[59]

    图  6  无法复现尸体模型数据的无脑脊液头部有限元模型[74, 76]

    Figure  6.  Finite element models of head without cerebrospinal fluid that cannot reproduce cadaveric model data[74, 76]

    图  7  三维头部有限元模型的前3阶频率对应模态[84]

    Figure  7.  The first three frequencies of the 3D finite element head model[84]

    图  8  脑损伤分析的多尺度框架[96]

    Figure  8.  Multiscale framework for brain injury analysis[96]

    图  9  爆炸载荷下头部最大线加速度、最大角加速度和与脑组织最大主应变的线性关系[49]

    Figure  9.  The linear relationship between the maximum linear acceleration, maximum angular acceleration of head and the maximum principal strain of brain tissue under blast load[49]

    图  10  基于头部角速度曲线通过数据驱动方法预测脑组织应变分布[100]

    Figure  10.  Prediction of brain tissue strain distribution using a data-driven approach based on head angular velocity curves[100]

  • [1] HANLON E M, BIR C A. Real-time head acceleration measurement in girls’ youth soccer [J]. Medicine and Science in Sports and Exercise, 2012, 44(6): 1102–1108. DOI: 10.1249/MSS.0b013e3182444d7d.
    [2] HOLBOURN A H S. Mechanics of head injuries [J]. The Lancet, 1943, 242(6267): 438–441. DOI: 10.1016/S0140-6736(00)87453-X.
    [3] FORERO RUEDA M A, CUI L, GILCHRIST M D. Finite element modelling of equestrian helmet impacts exposes the need to address rotational kinematics in future helmet designs [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14(12): 1021–1031. DOI: 10.1080/10255842.2010.504922.
    [4] ROWSON S, DUMA S M, BECKWITH J G, et al. Rotational head kinematics in football impacts: an injury risk function for concussion [J]. Annals of Biomedical Engineering, 2012, 40(1): 1–13. DOI: 10.1007/s10439-011-0392-4.
    [5] HARDY W N, KHALIL T B, KING A I. Literature review of head injury biomechanics [J]. International Journal of Impact Engineering, 1994, 15(4): 561–586. DOI: 10.1016/0734-743X(94)80034-7.
    [6] JONES M. Biomechanics of primary traumatic head injury [M]// WHITWELL H, MILROY C, DU PLESSIS D. Forensic Neuropathology. 2nd ed. Boca Raton: CRC Press, 2021: 45-54. DOI: 10.1201/9781003158035.
    [7] ONO K, KIKUCHI A, NAKAMURA M, et al. Human head tolerance to sagittal impact reliable estimation deduced from experimental head injury using subhuman primates and human cadaver skulls [J]. SAE Transactions, 1980: 3837-3866. DOI: 10.4271/801303.
    [8] NISHIMOTO T, MURAKAMI S. Relation between diffuse axonal injury and internal head structures on blunt impact [J]. Journal of Biomechanical Engineering, 1998, 120(1): 140–147. DOI: 10.1115/1.2834294.
    [9] ANDERSON R W G, BROWN C J, BLUMBERGS P C, et al. Impact mechanics and axonal injury in a sheep model [J]. Journal of Neurotrauma, 2003, 20(10): 961–974. DOI: 10.1089/089771503770195812.
    [10] BAILES J E, PETRAGLIA A L, OMALU B I, et al. Role of subconcussion in repetitive mild traumatic brain injury: a review [J].Journal of Neurosurgery, 2013, 119(5): 1235–1245. DOI: 10.3171/2013.7.JNS121822.
    [11] HUME P A, THEADOM A, LEWIS G N, et al. A comparison of cognitive function in former rugby union players compared with former non-contact-sport players and the impact of concussion history [J]. Sports Medicine, 2017, 47(6): 1209–1220. DOI: 10.1007/s40279-016-0608-8.
    [12] THUNNAN D J, BRANCHE C M, SNIEZEK J E. The epidemiology of sports-related traumatic brain injuries in the United States: recent developments [J]. Journal of Head Trauma Rehabilitation, 1998, 13(2): 1–8. DOI: 10.1097/00001199-199804000-00003.
    [13] CUNNINGHAM J, BROGLIO S, WILSON F. Influence of playing rugby on long-term brain health following retirement: a systematic review and narrative synthesis [J]. BMJ Open Sport and Exercise Medicine, 2018, 4(1): e000356. DOI: 10.1136/bmjsem-2018-000356.
    [14] FITZPATRICK A C, NAYLOR A S, MYLER P, et al. A three-year epidemiological prospective cohort study of rugby league match injuries from the European Super League [J]. Journal of Science and Medicine in Sport, 2018, 21(2): 160–165. DOI: 10.1016/j.jsams.2017.08.012.
    [15] SOICA A, TARULESCU S. Impact phase in frontal vehicle-pedestrian collisions [J]. International Journal of Automotive Technology, 2016, 17(3): 387–397. DOI: 10.1007/s12239-016-0040-y.
    [16] GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine [J]. International Journal of Impact Engineering, 2020, 136: 103417. DOI: 10.1016/j.ijimpeng.2019.103417.
    [17] LIU H, KANG J Y, CHEN J, et al. Intracranial pressure response to non-penetrating ballistic impact: an experimental study using a pig physical head model and live pigs [J]. International Journal of Medical Sciences, 2012, 9(8): 655–664. DOI: 10.7150/ijms.5004.
    [18] FREITAS C J, BIGGER R P, SCOTT N, et al. Composite materials dynamic back face deflection characteristics during ballistic impact [J]. Journal of Composite Materials, 2014, 48(12): 1475–1486. DOI: 10.1177/0021998313487934.
    [19] OUKARA A, NSIAMPA N, ROBBE C, et al. Assessment of non-lethal projectile head impacts [J]. Human Factors and Mechanical Engineering for Defense and Safety, 2017, 1(1): 3. DOI: 10.1007/s41314-016-0001-2.
    [20] National Research Council, Division on Engineering and Physical Sciences, Board on Army Science and Technology, et al. Review of Department of Defense test protocols for combat helmets [R]. Washington: The National Academies Press, 2014. DOI: 10.17226/18621.
    [21] GURDJIAN E S, GURDJIAN E S. Cerebral contusions: re-evaluation of the mechanism of their development [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1976, 16(1): 35–51. DOI: 10.1097/00005373-197601000-00005.
    [22] GURDJIAN E S, HODGSON V R, THOMAS L M, et al. Significance of relative movements of scalp, skull, and intracranial contents during impact injury of the head [J]. Journal of Neurosurgery, 1968, 29(1): 70–72. DOI: 10.3171/jns.1968.29.1.0070.
    [23] KING A I, YANG K H, ZHANG L, et al. Is head injury caused by linear or angular acceleration? [C]//Proceedings of the International Research Conference on the Biomechanics of Impacts. Lisbon, Portugal: IRCOBI, 2003: 1–12.
    [24] GENNARELLI T A, THIBAULT L E. Biomechanics of acute subdural hematoma [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1982, 22(8): 680–686. DOI: 10.1097/00005373-198208000-00005.
    [25] KLEIVEN S, PELOSO P M, HOLST H. The epidemiology of head injuries in Sweden from 1987 to 2000 [J]. Injury Control and Safety Promotion, 2003, 10(3): 173–180. DOI: 10.1076/icsp.10.3.173.14552.
    [26] KLEIVEN S. Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are [J]. Frontiers in Bioengineering and Biotechnology, 2013, 1: 15. DOI: 10.3389/fbioe.2013.00015.
    [27] MCCUEN E, SVALDI D, BREEDLOVE K, et al. Collegiate women’s soccer players suffer greater cumulative head impacts than their high school counterparts [J]. Journal of Biomechanics, 2015, 48(13): 3720–3723. DOI: 10.1016/j.jbiomech.2015.08.003.
    [28] CACCESE J B, LAMOND L C, BUCKLEY T A, et al. Reducing purposeful headers from goal kicks and punts may reduce cumulative exposure to head acceleration [J]. Research in Sports Medicine, 2016, 24(4): 407–415. DOI: 10.1080/15438627.2016.1230549.
    [29] REYNOLDS B B, PATRIE J, HENRY E J, et al. Comparative analysis of head impact in contact and collision sports [J]. Journal of Neurotrauma, 2017, 34(1): 38–49. DOI: 10.1089/neu.2015.4308.
    [30] LAMOND L C, CACCESE J B, BUCKLEY T A, et al. Linear acceleration in direct head contact across impact type, player position, and playing scenario in collegiate women’s soccer players [J]. Journal of Athletic Training, 2018, 53(2): 115–121. DOI: 10.4085/1062-6050-90-17.
    [31] NEVINS D, HILDENBRAND K, KENSRUD J, et al. Laboratory and field evaluation of a small form factor head impact sensor in un-helmeted play [J]. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2018, 232(3): 242–254. DOI: 10.1177/1754337117739458.
    [32] CHRISMAN S P D, EBEL B E, STEIN E, et al. Head impact exposure in youth soccer and variation by age and sex [J]. Clinical Journal of Sport Medicine, 2019, 29(1): 3–10. DOI: 10.1097/JSM.0000000000000497.
    [33] HARRISS A, JOHNSON A M, WALTON D M, et al. Head impact magnitudes that occur from purposeful soccer heading depend on the game scenario and head impact location [J]. Musculoskeletal Science and Practice, 2019, 40: 53–57. DOI: 10.1016/j.msksp.2019.01.009.
    [34] MYER G D, FOSS K B, THOMAS S, et al. Altered brain microstructure in association with repetitive subconcussive head impacts and the potential protective effect of jugular vein compression: a longitudinal study of female soccer athletes [J]. British Journal of Sports Medicine, 2019, 53(24): 1539–1551. DOI: 10.1136/bjsports-2018-099571.
    [35] RICH A M, FILBEN T M, MILLER L E, et al. Development, validation and pilot field deployment of a custom mouthpiece for head impact measurement [J]. Annals of Biomedical Engineering, 2019, 47(10): 2109–2121. DOI: 10.1007/s10439-019-02313-1.
    [36] TOLEA B, RADU A I, BELES H, et al. Influence of the geometric parameters of the vehicle frontal profile on the pedestrian’s head accelerations in case of accidents [J]. International Journal of Automotive Technology, 2018, 19(1): 85–98. DOI: 10.1007/s12239-018-0009-0.
    [37] NAUNHEIM R S, BAYLY P V, STANDEVEN J, et al. Linear and angular head accelerations during heading of a soccer ball [J]. Medicine & Science in Sports & Exercise, 2003, 35(8): 1406–1412. DOI: 10.1249/01.MSS.0000078933.84527.AE.
    [38] JONES C M, AUSTIN K, AUGUSTUS S N, et al. An instrumented mouthguard for real-time measurement of head kinematics under a large range of sport specific accelerations [J]. Sensors, 2023, 23(16): 7068. DOI: 10.3390/s23167068.
    [39] LIU Y Z, DOMEL A G, YOUSEFSANI S A, et al. Validation and comparison of instrumented mouthguards for measuring head kinematics and assessing brain deformation in football impacts [J]. Annals of Biomedical Engineering, 2020, 48(11): 2580–2598. DOI: 10.1007/s10439-020-02629-3.
    [40] O’CONNOR K L, ROWSON S, DUMA S M, et al. Head-impact-measurement devices: a systematic review [J]. Journal of Athletic Training, 2017, 52(3): 206–227. DOI: 10.4085/1062-6050.52.2.05.
    [41] REYNOLDS B B, PATRIE J, HENRY E J, et al. Practice type effects on head impact in collegiate football [J]. Journal of Neurosurgery, 2016, 124(2): 501–510. DOI: 10.3171/2015.5.JNS15573.
    [42] HORROCKS C L. Blast injuries: biophysics, pathophysiology and management principles [J]. BMJ Military Health, 2001, 147(1): 28–40. DOI: 10.1136/jramc-147-01-03.
    [43] OWENS B D, KRAGH JR J F, WENKE J C, et al. Combat wounds in operation Iraqi freedom and operation enduring freedom [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(2): 295–299. DOI: 10.1097/TA.0b013e318163b875.
    [44] Defense and Veterans Brain Injury Center. DoD worldwide numbers for TBI [R]. Defense and Veterans Brain Injury Center, 2018.
    [45] CHAMPION H R, HOLCOMB J B, YOUNG L A. Injuries from explosions: physics, biophysics, pathology, and required research focus [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2009, 66(5): 1468–1477. DOI: 10.1097/TA.0b013e3181a27e7f.
    [46] WOOD G W, PANZER M B, SHRIDHARANI J K, et al. Attenuation of blast pressure behind ballistic protective vests [J]. Injury Prevention, 2013, 19(1): 19–25. DOI: 10.1136/injuryprev-2011-040277.
    [47] YOUNG L, RULE G T, BOCCHIERI R T, et al. When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain [J]. Frontiers in Neurology, 2015, 6: 89. DOI: 10.3389/fneur.2015.00089.
    [48] GULLOTTI D M, BEAMER M, PANZER M B, et al. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury [J]. Journal of Biomechanical Engineering, 2014, 136(9): 091004. DOI: 10.1115/1.4027873.
    [49] SARVGHAD-MOGHADDAM H, REZAEI A, ZIEJEWSKI M, et al. Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI [J]. Shock Waves, 2017, 27(6): 919–927. DOI: 10.1007/s00193-017-0749-1.
    [50] MAO H J, UNNIKRISHNAN G, RAKESH V, et al. Untangling the effect of head acceleration on brain responses to blast waves [J]. Journal of Biomechanical Engineering, 2015, 137(12): 124502. DOI: 10.1115/1.4031765.
    [51] LOCKHART P, CRONIN D, WILLIAMS K, et al. Investigation of head response to blast loading [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2011, 70(2): E29–E36. DOI: 10.1097/TA.0b013e3181de3f4b.
    [52] SIEGMUND G P, KING D J, LAWRENCE J M, et al. Head/neck kinematic response of human subjects in low-speed rear-end collisions [C]//Proceedings of the 41st Stapp Car Crash Conference. Orlando: SAE, 1997: 3877–3905.
    [53] DIONNE J P, LEVINE J, MAKRIS A. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets [J]. Shock Waves, 2018, 28(1): 5–18. DOI: 10.1007/s00193-017-0737-5.
    [54] GANPULE S, ALAI A, PLOUGONVEN E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511–531. DOI: 10.1007/s10237-012-0421-8.
    [55] SIEGMUND G P, SANDERSON D J, INGLIS J T. Gradation of neck muscle responses and head/neck kinematics to acceleration and speed change in rear-end collisions [C]//48th Stapp Car Crash Conference. Vancouver: SAE, 2004. DOI: 10.4271/2004-22-0018.
    [56] ONO K, KANEOKA K, WITTEK A, et al. Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low speed rear impacts [C]//Proceedings of the 1997 41st Stapp Car Crash Conference. Lake Buena Vista: SAE, 1997: 3859-3876.
    [57] ESCARCEGA J D, KNUTSEN A K, ALSHAREEF A A, et al. Comparison of deformation patterns excited in the human brain in vivo by harmonic and impulsive skull motion [J]. Journal of Biomechanical Engineering, 2023, 145(8): 081006. DOI: 10.1115/1.4062809.
    [58] BUDDAY S, SOMMER G, BIRKL C, et al. Mechanical characterization of human brain tissue [J]. Acta Biomaterialia, 2017, 48: 319–340. DOI: 10.1016/j.actbio.2016.10.036.
    [59] BUDDAY S, NAY R, DE ROOIJ R, et al. Mechanical properties of gray and white matter brain tissue by indentation [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46: 318–330. DOI: 10.1016/j.jmbbm.2015.02.024.
    [60] KYRIACOU S K, MOHAMED A, MILLER K, et al. Brain mechanics for neurosurgery: modeling issues [J]. Biomechanics and Modeling in Mechanobiology, 2002, 1(2): 151–164. DOI: 10.1007/s10237-002-0013-0.
    [61] BUDDAY S, STEINMANN P, KUHL E. Physical biology of human brain development [J]. Frontiers in Cellular Neuroscience, 2015, 9: 257. DOI: 10.3389/fncel.2015.00257.
    [62] FRANCESCHINI G, BIGONI D, REGITNIG P, et al. Brain tissue deforms similarly to filled elastomers and follows consolidation theory [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(12): 2592–2620. DOI: 10.1016/j.jmps.2006.05.004.
    [63] WARD C C, THOMPSON R B. The development of a detailed finite element brain model [C]//19th Stapp Car Crash Conference. SAE, 1975: 3238–3252. DOI: 10.4271/751163.
    [64] HOSEY R. A homeomorphic finite element model of the human head and neck [J]. Finite Elements in Biomechanics, 1982.
    [65] NICOLLE S, LOUNIS M, WILLINGER R. Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results [C]//48th Stapp Car Crash Conference. Strasbourg: SAE, 2004. DOI: 10.4271/2004-22-0011.
    [66] PETERS G W M, MEULMAN J H, SAUREN A A H J. The applicability of the time/temperature superposition principle to brain tissue [J]. Biorheology, 1997, 34(2): 127–138. DOI: 10.1016/S0006-355X(97)00009-7.
    [67] KLEIVEN S, HARDY W N. Correlation of an FE model of the human head with local brain motion-consequences for injury prediction [C]//46th Stapp Car Crash Conference. SAE, 2002. DOI: 10.4271/2002-22-0007.
    [68] HORGAN T J, GILCHRIST M D. The creation of three-dimensional finite element models for simulating head impact biomechanics [J]. International Journal of Crashworthiness, 2003, 8(4): 353–366. DOI: 10.1533/ijcr.2003.0243.
    [69] GHAJARI M, HELLYER P J, SHARP D J. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology [J]. Brain, 2017, 140(2): 333–343. DOI: 10.1093/brain/aww317.
    [70] WITTEK A, MILLER K, KIKINIS R, et al. Patient-specific model of brain deformation: application to medical image registration [J]. Journal of Biomechanics, 2007, 40(4): 919–929. DOI: 10.1016/j.jbiomech.2006.02.021.
    [71] YANG S C, TANG J S, NIE B B, et al. Assessment of brain injury characterization and influence of modeling approaches [J]. Scientific Reports, 2022, 12(1): 13597. DOI: 10.1038/s41598-022-16713-2.
    [72] CHENG L Y, RIFAI S, KHATUA T, et al. Finite element analysis of diffuse axonal injury [C]//International Congress and Exposition. SAE, 1990. DOI: 10.4271/900547.
    [73] DIMASI F, TONG P, MARCUS J H, et al. Simulated head impacts with upper interior structures using rigid and anatomic brain models [M]//OÑATE E, PERIAUX J, SAMUELSSON A. The Finite Element Method in the 1990’s: A Book Dedicated to O. C. Zienkiewicz. Berlin: Springer, 1991: 333–345. DOI: 10.1007/978-3-662-10326-5_34.
    [74] KUIJPERS A H W M, CLAESSENS M H A, SAUREN A A H J. The influence of different boundary conditions on the response of the head to impact: a two-dimensional finite element study [J]. Journal of Neurotrauma, 1995, 12(4): 715–724. DOI: 10.1089/neu.1995.12.715.
    [75] NAHUM A M, SMITH R, WARD C C. Intracranial pressure dynamics during head impact [C]//21st Stapp Car Crash Conference. San Diego: SAE, 1977. DOI: 10.4271/770922.
    [76] CLAESSENS M H A, SAUREN A A H J, WISMANS J S H M. Modeling of the human head under impact conditions: a parametric study [C]//41st Stapp Car Crash Conference. Orlando: SAE, 1997: 3829–3848. DOI: 10.4271/973338.
    [77] KIMPARA H, NAKAHIRA Y, IWAMOTO M, et al. Head injury prediction methods based on 6 degree of freedom head acceleration measurements during impact [J]. International Journal of Automotive Engineering, 2011, 2(2): 13–19. DOI: 10.20485/jsaeijae.2.2_13.
    [78] MAO H J, ZHANG L Y, JIANG B H, et al. Development of a finite element human head model partially validated with thirty five experimental cases [J]. Journal of Biomechanical Engineering, 2013, 135(11): 111002. DOI: 10.1115/1.4025101.
    [79] MILLER L E, URBAN J E, STITZEL J D. Development and validation of an atlas-based finite element brain model [J]. Biomechanics and Modeling in Mechanobiology, 2016, 15(5): 1201–1214. DOI: 10.1007/s10237-015-0754-1.
    [80] LI X G. Subject-specific head model generation by mesh morphing: a personalization framework and its applications [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 706566. DOI: 10.3389/fbioe.2021.706566.
    [81] ZHOU Z, LI X G, KLEIVEN S. Fluid-structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction [J]. Biomechanics and Modeling in Mechanobiology, 2019, 18(1): 155–173. DOI: 10.1007/s10237-018-1074-z.
    [82] BÉKÉSY G V. Vibration of the head in a sound field and its role in hearing by bone conduction [J]. The Journal of the Acoustical Society of America, 1948, 20(6): 749–760. DOI: 10.1121/1.1906433.
    [83] FRANKE E K. Response of the human skull to mechanical vibrations [J]. The Journal of the Acoustical Society of America, 1956, 28(6): 1277–1284. DOI: 10.1121/1.1908622.
    [84] FONVILLE T R, SCAROLA S J, HAMMI Y, et al. Resonant frequencies of a human brain, skull, and head [M]//PRABHU R, HORSTEMEYER M. Multiscale Biomechanical Modeling of the Brain. Amsterdam: Elsevier, 2022: 239–254. DOI: 10.1016/B978-0-12-818144-7.00006-2.
    [85] LAKSARI K, KURT M, BABAEE H, et al. Mechanistic insights into human brain impact dynamics through modal analysis [J]. Physical Review Letters, 2018, 120(13): 138101. DOI: 10.1103/PhysRevLett.120.138101.
    [86] LJUNG C. A model for brain deformation due to rotation of the skull [J]. Journal of Biomechanics, 1975, 8(5): 263–274. DOI: 10.1016/0021-9290(75)90078-0.
    [87] BAYLY P V, MASSOUROS P G, CHRISTOFOROU E, et al. Magnetic resonance measurement of transient shear wave propagation in a viscoelastic gel cylinder [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 2036–2049. DOI: 10.1016/j.jmps.2007.10.012.
    [88] MARGULIES S S, THIBAULT L E. An analytical model of traumatic diffuse brain injury [J]. Journal of Biomechanical Engineering, 1989, 111(3): 241–249. DOI: 10.1115/1.3168373.
    [89] MASSOUROS P G, BAYLY P V, GENIN G M. Strain localization in an oscillating Maxwell viscoelastic cylinder [J]. International Journal of Solids and Structures, 2014, 51(2): 305–313. DOI: 10.1016/j.ijsolstr.2013.09.022.
    [90] MASSOUROS P G, GENIN G M. The steady-state response of a Maxwell viscoelastic cylinder to sinusoidal oscillation of its boundary [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464(2089): 207–221. DOI: 10.1098/rspa.2007.0081.
    [91] CHRISTENSEN R M, GOTTENBERG W G. The dynamic response of a solid, viscoelastic sphere to translational and rotational excitation [J]. Journal of Applied Mechanics, 1964, 31(2): 273–278. DOI: 10.1115/1.3629597.
    [92] COTTER C S, SMOLARKIEWICZ P K, SZCZYRBA I N. A viscoelastic fluid model for brain injuries [J]. International Journal for Numerical Methods in Fluids, 2002, 40(1/2): 303–311. DOI: 10.1002/fld.287.
    [93] WAN Y, FANG W Q, CARLSEN R W, et al. A finite rotation, small strain 2D elastic head model, with applications in mild traumatic brain injury [J]. Journal of the Mechanics and Physics of Solids, 2023, 179: 105362. DOI: 10.1016/j.jmps.2023.105362.
    [94] GABLER L F, CRANDALL J R, PANZER M B. Development of a second-order system for rapid estimation of maximum brain strain [J]. Annals of Biomedical Engineering, 2019, 47(9): 1971–1981. DOI: 10.1007/s10439-018-02179-9.
    [95] MCBIRNEY S, HOCH E. Toward a unified multiscale computational model of the human body’s immediate responses to blast-related trauma: proceedings and expert findings from a U. S. department of defense international state-of-the-science meeting [J]. Rand Health Quarterly, 2023, 10(4): 11.
    [96] MONTANINO A, LI X G, ZHOU Z, et al. Subject-specific multiscale analysis of concussion: from macroscopic loads to molecular-level damage [J]. Brain Multiphysics, 2021, 2: 100027. DOI: 10.1016/j.brain.2021.100027.
    [97] LIU Y K, CHANDRA K B, VON ROSENBERG D U. Angular acceleration of viscoelastic (Kelvin) material in a rigid spherical shell: a rotational head injury model [J]. Journal of Biomechanics, 1975, 8(5): 285–292. DOI: 10.1016/0021-9290(75)90080-9.
    [98] HOSSEINI-FARID M, AMIRI-TEHRANI-ZADEH M S, RAMZANPOUR M, et al. The strain rates in the brain, brainstem, dura, and skull under dynamic loadings [J]. Mathematical and Computational Applications, 2020, 25(2): 21. DOI: 10.3390/mca25020021.
    [99] CARLSEN R W, FAWZI A L, WAN Y, et al. A quantitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis [J]. Brain Multiphysics, 2021, 2: 100024. DOI: 10.1016/j.brain.2021.100024.
    [100] WU S J, ZHAO W, GHAZI K, et al. Convolutional neural network for efficient estimation of regional brain strains [J]. Scientific Reports, 2019, 9(1): 17326. DOI: 10.1038/s41598-019-53551-1.
    [101] WU S J, ZHAO W, JI S B. Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact [J].Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114913. DOI: 10.1016/j.cma.2022.114913.
    [102] ZHAN X H, LIU Y Z, RAYMOND S J, et al. Rapid estimation of entire brain strain using deep learning models [J]. IEEE Transactions on Biomedical Engineering, 2021, 68(11): 3424–3434. DOI: 10.1109/TBME.2021.3073380.
    [103] ZHAN X H, LI Y H, LIU Y Z, et al. Machine-learning-based head impact subtyping based on the spectral densities of the measurable head kinematics [J]. Journal of Sport and Health Science, 2023, 12(5): 619–629. DOI: 10.1016/j.jshs.2023.03.003.
    [104] ZHAN X H, LIU Y Z, CECCHI N J, et al. AI-based denoising of head impact kinematics measurements with convolutional neural network for traumatic brain injury prediction [J]. IEEE Transactions on Biomedical Engineering, 2024, 71(9): 2759–2770. DOI: 10.1109/TBME.2024.3392537.
  • 期刊类型引用(5)

    1. 李鸿宾, 徐森, 贾宪振, 杨建, 金朋刚. 爆容弹爆炸响应实验与仿真. 科学技术与工程. 2025(21) 百度学术
    2. 张学瑞,周涛. 密闭空间中复合装药的能量释放特性. 爆炸与冲击. 2024(06): 41-49 . 本站查看
    3. 胡葵,柴亚博,罗宁,张浩浩. 2kg TNT当量圆柱形爆炸容器结构设计与安全校核. 工程爆破. 2024(04): 102-110 . 百度学术
    4. 胡俊华,董奇,胡八一,任逸飞,黄广炎. 抗爆容器的内部爆炸效应和动态力学行为研究进展. 含能材料. 2024(09): 986-1008 . 百度学术
    5. 解江,潘汉源,李漩,王立轩,蒋逸伦,冯振宇. 内爆载荷作用下泄压容器准静态压力特性. 应用数学和力学. 2023(10): 1236-1249 . 百度学术

    其他类型引用(4)

  • 加载中
图(10)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  264
  • PDF下载量:  151
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-07-04
  • 修回日期:  2024-10-22
  • 网络出版日期:  2024-11-05
  • 刊出日期:  2024-12-01

目录

/

返回文章
返回