Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals
-
摘要: 针对电池发生碰撞后的未知变形,目前仅通过电压、温度、电流等物理信号感知异常电池,缺乏直接的电池形变监测手段。为了弥补这一不足,利用小型压电片,基于超声导波,实现对锂离子电池形变和碰撞的监测。首先,搭建了针对锂离子电池不同加载的实验平台,开展了准静态、微碰撞实验;然后,对实验结果进行了讨论,阐明了在不同加载下超声信号的变化规律。结果表明:在电池准静态实验中,超声幅值信号与电池变形程度负相关;在电池落球冲击实验中,碰撞冲击会改变超声的幅值与能量积分,可以以此为依据来判断电池是否发生碰撞。最后,建立了大变形下超声与电池变形失效监测的映射关系,提出了碰撞变形下基于超声传感器的判定方法。Abstract: As lithium-ion batteries are widely used in the industry represented by electric vehicles, their collision-induced safety problems have aroused widespread concern in the industry and society. Under the collision condition of an electric vehicle, on the one hand, the deformation of the battery will lead to direct fire and explosion. On the other hand, the unknown deformation of the battery caused by the collision will bring safety risks to subsequent use. For the unknown deformation of batteries after the collision, abnormal batteries can only be perceived by physical signals such as voltage, temperature, and current, and there is no direct monitoring method for battery deformation. To bridge this gap, this paper uses small piezoelectric plates and realizes deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided waves. An experimental platform for different loads of lithium-ion batteries was built, and quasi-static and micro-collision experiments were carried out. The experimental results were analyzed and discussed to clarify the change law of ultrasonic signals under different loads. The results show that in the quasi-static battery experiment, the ultrasonic amplitude signal was negatively correlated with the deformation degree of the battery. When the battery was subjected to a gradually increasing load and the deformation became more serious, the amplitude would gradually decrease; when the battery was deformed and failed, the amplitude would drop instantaneously. In the ball-dropping experiment, the impact deformation will affect the change of amplitude and energy integration of the ultrasonic signal, which can be used as a basis to judge whether the battery collision occurs. Finally, a mapping relationship between ultrasonic signal and battery deformation for failure monitoring under large deformation is established, and the criteria for collision deformation based on ultrasonic sensors is proposed. The results suggest a new method for the safety monitoring of lithium-ion batteries, which is expected to be applied in electric vehicles and other fields.
-
Key words:
- lithium-ion battery /
- ultrasonic guided wave /
- collision /
- deformation /
- condition monitoring
-
锂离子电池由于其能量密度高、循环寿命长、自放电倍率低等优点广泛应用于电动汽车消费电子、储能等行业,是一种重要的储能器件[1-3]。然而,随着电动汽车占有率的增长,动力电池碰撞安全性问题日益突出。在电动汽车碰撞工况下,一方面,电池的变形会导致直接的起火爆炸,另一方面,碰撞导致的电池未知变形,对后续的使用带来安全隐患,这些安全问题严重阻碍了锂离子电池的发展及应用[4-9]。
针对锂电池的碰撞安全问题,研究者在数值模拟和实验测试方面已开展了一系列的研究工作。在实验测试方面,相关研究者首先通过压缩[10-12]、压痕[10-11, 13]、三点弯曲[10-11]和针刺[13-14]等准静态工况研究电池在力学滥用下的基本失效过程。进一步研究者通过落锤实验等动态测试方法研究了电池的动态响应和失效过程。Kisters等[15]、Pan等[16]和Chen等[17]通过不同的冲击速度对锂离子电池进行动态冲击实验,分析电池的失效过程。进一步地,研究者开展了不同方向[18]、不同老化程度的电池[19]和不同加载条件[20-21]等针对锂离子电池的动态测试,分析各因素对动态行为的影响。在数值模拟方面,Xu等[22]、Jia等[23]、Avdeev等[24]开发了电池的均质化力学模型用于预测电池单体/模组在冲击载荷下的短路失效行为,进一步Zhang等[25]、Zhu等[26]和Wang等[27-28]建立了考虑组分材料的细致化力学模型,意图建立组分失效与单体失效的多尺度联系。Liu等[6]和李红刚等[29]的综述对这部分实验和模型有更为系统的总结。
针对电池的损伤和失效评估,一方面研究者结合仿真模型和实验方法更好地揭示了电池损伤到短路的过程。力学失效方面,研究者通过均质化模型发现电池短路失效和应力状态的关系,并建立了基于最大主应力[30-31]、摩尔-库伦[11]、统一强度理论[32]的短路失效准则。Yuan等[33]通过细致化模型发现了隔膜失效与短路的定量关系,Wang等[34]进一步厘清了短路失效模式与电池短路模式的定量关系。在多物理场失效方面,Jia等[35]、Liu等[3]和Li等[36]开发了一种高效的锂离子电池力-热耦合模型,用于研究电池在机械滥用下的多物理场失效过程。Yang等[37]提出了一种基于交互式多模型算法的电池损伤检测方法来评估预测电池过充或过放的受损情况,Jia等[38]在多物理场模型的基础上进一步研究了损伤电池的老化行为。
另一方面,研究者通过结合无损检测的技术分析电池的失效机理。这些方法主要包括X射线计算机断层扫描[39-41]、中子衍射[42-43]和中子成像技术[44-45]等。然而这些无损检测方法造价昂贵,并且在使用过程中可能需要保护措施,难以实现电池使用工况下的安全状态实时监测。超声检测作为一种成熟的无损探伤技术,因其准确、实时、高效等特点,已经被广泛地应用于工业工程中进行工件缺陷的探伤和状态检测以及医疗领域中医疗成像进行诊断[46-49]。超声检测同样在锂离子状态监测方面已经开展了初步的应用,证实了超声在监测锂离子电池的潜力[50-51]。Ladpli等[52]首次利用超声导波监测充放电的锂离子电池,发现飞行时间(time of flight, TOF)信号与电池充放电之间的关联性。Popp等[53]测量超声导波通过电池的TOF,从而监测锂离子电池的荷电状态。Zhao等[54]利用超声导波信号幅度(signal amplitude, SA)、TOF、功率谱密度3个导波参数,综合评价锂离子电池的充电状态(state of charge, SOC)和健康状态(state of health, SOH)。Liu等[55]量化了充放电速率对锂离子电池的影响,利用超声导波TOF信号,建立了动态充放电条件下电池荷电状态的预测方法。Li等[56]利用超声导波的多特征指标实现对锂离子电池状态的监测。Tian等[57]利用啁啾信号激发超声导波进行锂离子电池SOC的估计,并能够简单高效地获取超声最优激励频率。Reichmann等[58]利用超声导波建立了一个预测模型,用于预测锂离子电池的SOC、SOH和温度。目前的研究仍然缺乏利用超声信号对锂离子变形状监测相关的技术应用。
为了弥补这一不足,本文中,利用小型压电片,基于超声导波,实现锂离子电池形变和碰撞的监测。首先,搭建针对锂离子电池不同加载的实验平台,开展准静态、微碰撞实验;然后,对实验结果进行讨论,阐明在不同加载下超声信号的变化规律;最后,建立大变形下超声与电池变形失效监测的映射关系,提出碰撞变形下基于超声传感器的判定方法。
1. 实 验
1.1 样品与设备
选取了一款磷酸铁锂软包电池开展实验,实验设备如图1所示。实验中所用磷酸铁锂软包电池的正极和负极分别为LiFePO4和石墨。该电池的尺寸为78.5 mm×63.1 mm×4.4 mm,额定电压为3.2 V,充电截止电压为3.65 V,放电截止电压为2.0 V,额定容量为
2400 mAh。对电池试样进行充放电处理得到不同SOC的电池。具体的充放电操作在蓝电平台(图1(b))上进行。为了保证实验样品状态一致,首先通过1C(设置2400 mA的电流进行1 h放电操作)的放电倍率将电池的电压放到截止电压2.0 V。静置10 min后,同样以1C的充电倍率将电池充电到充电截止电压3.65 V,再静置10 min后,通过不同放电时间(1.0、0.9、0.8和0.7 h)对电池进行放电操作,得到不同SOC(0%、10%、20%和30%,由于安全问题采用了较低SOC状态)的电池样本。根据Li等[59]和Gao等[60]的研究可知,不同SOC会导致电池材料性能发生一定的变化,但这些少量的材料性能改变不会导致更高SOC结果的规律性变化。为了减少温度对电池的影响,电池充放电都在恒温箱(图1(g))中进行。在超声传感器的布置连接上,利用AB胶(Ergo1309)将小型压电片粘接在电池左右距离中心点25 mm的位置处。在整个实验过程中,2个压电片持续不断地向电池发出和接收超声信号,再通过KickStart 2软件实时收集实验过程中的超声数据。实验通过信号发生器(图1(e))发射中心频率为105 kHz、最大振幅为20 V的5周期正弦超声波脉冲信号。将示波器(图1(f))的带宽限度设置为500 MHz,并且通过带宽为500 MHz、采样频率为2×108 s−1的射频线连接到压电传感器,这使得携带电池信息的超声导波可以以最短的延迟采集。在准静态加载实验中,将示波器的信号采集模式设置为“平均”模式(计算512次采集数据的平均值),从而减少随机噪声的干扰。在微碰撞实验上,使用示波器的逻辑触发功能,利用激光传感器作为触发的条件,从而达到逻辑触发条件并进行波形截取。采用“取样”信号采集模式进行波形的采集,虽然利用这个模式会有一定随机噪声的干扰,但是更有利于获取碰撞瞬间超声信号的变化。
1.2 准静态加载实验
将电池超声传感系统搭建完成后,针对该电池开展了压痕、压缩等实验,在过程中记录了温度、电压和超声信号,并开展了分析。
1.2.1 压痕实验
在压痕实验中,测试设备及实验设置如图1所示。首先,将电池与超声压电传感器、温度传感器、电压表(图1(d))相连接,设置各仪器参数。随后,将连接好的电池样品放置于力学试验机(图1(a))上开展压痕实验(压头直径为5 mm)。实验设置为:首先给电池施加5 N的预载,然后以0.5 mm/min的速度匀速加载,直至电池失效(具体现象为载荷出现下降)。在实验过程中,分别使用上述传感器记录载荷、位移、温度和超声信息。
1.2.2 压缩实验
压缩实验的实验过程与压痕实验一致,同样为准静态加载。为了考虑不同加载方向的影响,模拟电池在组装及在使用过程中可能会受到的挤压情况,在厚度方向(后续称压缩)、宽度方向(后续称横压)和长度方向(后续称竖压)开展实验,如图2所示。由于这3个方向不容易发生短路失效,因此,在厚度、宽度和长度方向设置预载均为5 N,截止载荷分别为
2000 、200和100 N。在进行宽度和长度方向的压缩实验时,对试件施加预载,让其固定于接触盘之间,也能避免在压缩过程中发生滑移现象。在长度方向截止载荷较小是因为在实际应用中,电池在此方向上能够承受的挤压强度和变形相对较小。同样利用各个传感器记录实验数据。1.3 小球碰撞实验
为了研究电池在使用过程中遭遇不同飞溅物冲击时的超声信号变化,开展了对电池的动态冲击实验,如图3所示,模拟电池在使用过程中可能遇到的各种意外碰撞情况。
实验中,选用直径均为10 mm的2种材料的小球,即硬质球(304不锈钢)和软质球(橡皮泥),模拟不同的撞击物;小球的下落高度选择20和40 cm;利用直径为32 mm的玻璃导轨来保证小球下落时的高度和落点,并且确保小球在下落过程中不与管道产生摩擦。导波的信号频率选择100、150和200 kHz这3个频率,观察不同频率的实验结果,超声平台的连接同1.1节。利用激光传感器与示波器的配合,触发示波器截取波形。当小球下落并遮挡住激光时,激光传感器会在示波器上产生一个下降沿信号。示波器在接收到这个下降沿信号的瞬间,会立即截取波形数据,从而记录下冲击瞬间的信号变化。激光传感器放置于电池长度方向中心位置,间隔45 mm。小球下落位置(导轨放置位置)布置在激光传感器相间的中心点。由于导轨直径大于小球直径,所以在小球下落时,其冲击点位置误差范围在以中心点为圆心的半径2.5 mm的圆内。
2. 结 果
电池压痕前后的超声导波波形对比如图4所示,可以看到,在压痕实验前后,超声信号会发生较大的变化,尤其是幅值信号。为了便于后续分析,提取了信号幅值(SA,
As )、飞行时间(TOF,tf)和超声波形能量积分等信号特征做进一步分析。幅值As=Amax−Amin ,Amax 为波形图中的最大值,Amin 为波形图中的最小值。超声飞行时间tf=tA0max−tA1max ,tA0max 为超声原始波形中达到波形最大值的时刻,tA1max 为接收波形中达到波形最大值的时刻。能量积分E=∫tbtaA2dt ,其中A 为波形图中每个时刻所对应的波形数值,ta−tb 为波形持续总时间。进一步对比了3种信号特征SA、TOF、E在压痕工况下的结果,如图5所示,可以看出,E和SA对电池变形都比较敏感,TOF与电池变形没有明显的映射关系。由于幅值信号SA计算更便捷,在后续分析中均采用幅值信号。
超声波在介质中的传播过程受多种因素影响,其中包括介质的密度、各项模量和孔隙率等。而超声波在介质中传播时,介质的吸收、超声波束路径中的不均匀性以及颗粒的散射会导致超声波的能量衰减、振幅下降。根据声阻抗
Z=ρc 以及声速c=√E/Eρρ ,可得Z=√ρE ,其中ρ 为密度,E 为杨氏模量。如果界面间声阻抗相似,则声信号会被大量传输进介质内,否则会被反射衰减[50, 61]。在电池的准静态实验中,电池在受到小球持续下压的过程中,其受压区域密度逐渐变大。受压过程中电池局部声阻抗增大,根据反射系数λr=(Z2−Z1)2/(Z2−Z1)2(Z2+Z1)2(Z2+Z1)2 (Z1和Z2分别代表空气和锂离子电池的声阻抗)和透射系数λt=4Z1Z2/4Z1Z2(Z1+Z2)2(Z1+Z2)2 以及两者之间的关系λr+λt=1 ,可以推出电池的反射系数增大透射系数减小,从而使得超声更多是被反射而不是透射进入到电池内部,这也是导致超声幅值下降的主要原因。而又由于锂离子电池独特的多层多孔结构以及包括其杨氏模量的非线性因素[62-63],超声波在其内部传播还会发生一些波重叠现象等,所以在受压过程中可能会由于这些因素导致幅值并不是随着载荷的增大而线性下降,是一种非线性的负相关关系。因此,从理论上通过超声的幅值信号监测电池的形变是可行的。具体的实验结果如图6所示,包含压痕过程中电池电压和温度结果。可以看到,在对电池施加载荷使之产生形变的起始阶段,如图6中①处所示,信号幅值开始产生变化,并且随着载荷的逐步增大,信号幅值持续下降。与此同时电压和温度并未产生任何变化,所以在监测电池受载和形变方面,超声信号优于电压和温度信号。在电池失效瞬间,如图6中②处所示,在电压信号大幅下降以及温度信号大幅度上升的同时,超声信号幅值发生大幅下降,这说明超声信号可以准确判断电池发生失效的瞬间。综上所述,超声幅值是能够作为优于电压、温度信号之外的电池变形失效判断依据。
进一步,不同方向的加载实验结果如图7所示。从图7(a)可以看到,在电池受压缩的过程中,超声信号幅值与载荷同样也呈负相关关系,且在卸载后,超声信号幅值出现了一定的回弹。横压实验结果如图7(b)所示,可以看出,在横压实验过程中,随着力学试验机以恒定速度逐渐增加载荷,超声信号的幅值出现了明显的下降。这说明,当电池承受的横向压力增加时,超声信号幅值下降。竖压实验结果如图7(c)所示,与横压实验类似,在竖压实验中,随着载荷的增加,超声信号幅值出现了下降的趋势。
通过对不同方向加载实验数据分析,可以得出结论:电池在受到不同方向挤压时,其超声信号幅值都会随着载荷的增加而下降,并且在受到可恢复的挤压后,超声信号可能会发生恢复的情况。这一发现提供了电池在复杂受力环境下行为特性的重要信息,有助于更全面地理解电池在复杂受力环境下超声信号的变化特性。
在锂离子电池使用的过程中,其荷电状态(SOC)是十分重要的一个指标,且电池SOC的变化,会影响到其内部的各项性能参数,从而影响到超声的传播[55]。因此,为了探讨电池SOC对压痕失效实验结果的影响,取SOC不同的电池样品进行实验,观察不同电池SOC对超声检测其变形的影响,结果如图8所示。不难看出,在不同SOC下,超声信号幅值的初始值会有不同。这是因为,SOC不同时,电池的比模量不同而导致阻尼不同,会影响超声在电池中的传播,从而导致超声信号幅值初始值不同[55]。同样,超声信号幅值与电池受载荷形变仍存在负相关的关系,不同的SOC对受压过程中幅值信号下降这一趋势的影响不大,超声幅值信号随着电池形变而发生下降的规律依旧可以得到保证。而在电池失效后由于电池能量的释放导致电池产气和胀气,影响超声对电池的后续检测。需要注意是,本文中主要观测在电池受压以及受压失效瞬间这个过程中超声信号的变化,对后续电池产生胀气等剧烈现象超声的规律性需要进一步研究。
综上所述,超声幅值是能够作为电压和温度信息之外的电池失效判断依据,且更优于这些物理信号。从目前的实验来说,已经得到了超声信号与电池形变的关联性,即在加载时,超声幅值会实时随着载荷的增大而减小,且在不同的磷酸铁锂电池上都有较好的普适性。
3. 讨 论
3.1 电池单体失效映射模型
根据第2节的实验结果,在锂离子电池准静态受压至失效的过程中,超声信号会随着电池的形变而变化,从而可以实现对电池形变以及失效的监测。为了更深入地理解电池的性能和预测其潜在的失效点,采用非线性曲面拟合方法对电池的实验结果进行了拟合,构建了一个能够根据电池的SOC和超声信号的幅值来预测电池电压的模型,从而预测电池失效。
在拟合过程中,选取了电池SOC(βc)分别为0%、10%、20%和30%时的数据作为模型的输入进行拟合,公式为
U=aβ2c−bA2s−cβcAs+dβc+eAs−f ,其中U为电池电压,a=−0.0025 V,b=5.028×104 V−1,c=8.46,d=0.17 V,e=975.80,f=1.72 V。模型拟合结果如图9所示,可以看出,由于低SOC状态下电池内部发生的物理过程较复杂,且未进行高SOC状态的准静态实验缺少相应数据,导致模型在预测电压失效时存在一定的偏差,但模型可以及时预测电池失效的瞬间。这一结果证明了模型能够准确地捕捉到电池失效时的电压变化特征,为预测电池的失效提供了有力的支持。同时需要说明的是,对于不同款型的磷酸铁锂电池,可能需要对模型参数重新标定。3.2 电池单体碰撞微变形判定方法
由第2节可知电池产生变形形变会对超声信号产生显著影响,因此通过超声信号也能尝试对电池微小碰撞进行监测。根据1.3节设计的碰撞实验,提取碰撞前后的超声信号进行对比分析,在电池受到冲击的瞬间,超声信号幅值会发生下降,超声TOF信号变化较小保持稳定,超声信号能量积分增大。在不同信号频率下都有相似的结论,频率不会对电池受冲击后的上述规律产生较大的影响。单用幅值信号(图10(a))难以直观反映电池受冲击后信号(幅值信号跳动重叠)的变化,因此将幅值与能量积分信号结合,如图10(b)所示,通过对比电池在受硬质球冲击前后的信号幅值-能量积分图可以看到,不同高度下小球冲击导致的电池响应变化程度是有所区别的。在图中,圈出的部分代表了原始的波形位置,通过对比冲击前后的波形,可以更直观地理解冲击对电池的影响。经过实验验证,超声信号能够监测至少为0.01 J的冲击能量。因此,通过超声信号可以有效地监测电池的微碰撞,可为电池的安全状态监测提供重要信息。
4. 结 论
通过对磷酸铁锂电池进行多种工况的实验,分析了电池在准静态和动态实验下的超声信号响应。实验结果表明,准静态实验下,电池在受压变形失效的过程中,超声信号幅值会持续下降,与侵入深度呈反相关关系,且在电池机械失效后超声信号也会发生大幅度下降,可以作为电池在受压的实时监测表征量。进一步根据所得结果建立了一个能够预测电池电压变化失效的映射模型,可以优于电压、温度等信号提前且准确判断电池是否受压及失效。动态实验中,得到了碰撞前后超声信号变化规律,提出了通过超声信号判断电池受到碰撞的方法,有助于更好地理解电池在冲击作用下的响应机制。这些研究结果表明利用超声信号可以对电池状态进行更好的监测,为电池在实际应用中的挤压与冲击的实时安全监测提供有效的方法。需要说明的是,在实际的工程应用中仍然需要考虑电磁干扰、环境因素等问题,需要进一步的实验验证。
-
[1] LIU Y, PAN Y J, WANG H C, et al. Mechanical issues of lithium-ion batteries in road traffic conditions: a review [J]. Thin-Walled Structures, 2024, 201: 111985. DOI: 10.1016/j.tws.2024.111985. [2] CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery [J]. Journal of Power Sources, 2020, 478: 228649. DOI: 10.1016/j.jpowsour.2020.228649. [3] LIU B H, ZHAO H, YU H L, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading [J]. Electrochimica Acta, 2017, 256: 172–84. DOI: 10.1016/j.electacta.2017.10.045. [4] HU L L, ZHANG Z W, ZHOU M Z, et al. Crushing behaviors and failure of packed batteries [J]. International Journal of Impact Engineering, 2020, 143: 103618. DOI: 10.1016/j.ijimpeng.2020.103618. [5] LIU B H, JIA Y K, LI J N, et al. Multiphysics coupled computational model for commercialized Si/graphite composite anode [J]. Journal of Power Sources, 2020, 450: 227667. DOI: 10.1016/j.jpowsour.2019.227667. [6] LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review [J]. Energy Storage Materials, 2020, 24: 85–112. DOI: 10.1016/j.ensm.2019.06.036. [7] LAI W J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions [J]. Journal of Power Sources, 2014, 248: 789–808. DOI: 10.1016/j.jpowsour.2013.09.128. [8] JIANG S, SHI F Y, LI J, et al. Internal short circuit and dynamic response of large-format prismatic lithium-ion battery under mechanical abuse [J]. Journal of Electrochemical Energy Conversion and Storage, 2024, 22(2): 1–24. DOI: 10.1115/1.4066056. [9] XIA Y, WIERZBICKI T, SAHRAEI E, et al. Damage of cells and battery packs due to ground impact [J]. Journal of Power Sources, 2014, 267: 78–97. DOI: 10.1016/j.jpowsour.2014.05.078. [10] SAHRAEI E, HILL R, WIERZBICKI T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity [J]. Journal of Power Sources, 2012, 201: 307–21. DOI: 10.1016/j.jpowsour.2011.10.094. [11] GREVE L, FEHRENBACH C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical lithium ion battery cells [J]. Journal of Power Sources, 2012, 214: 377–85. DOI: 10.1016/j.jpowsour.2012.04.055. [12] LAI W J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery cells under compressive loading conditions [J]. Journal of Power Sources, 2014, 245: 609–23. DOI: 10.1016/j.jpowsour.2013.06.134. [13] MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells [J]. Journal of Power Sources, 2009, 191(2): 568–74. DOI: 10.1016/j.jpowsour.2009.02.070. [14] MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration [J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103–15. DOI: 10.1016/j.ijheatmasstransfer.2018.02.036. [15] KISTERS T, SAHRAEI E, WIERZBICKI T. Dynamic impact tests on lithium-ion cells [J]. International Journal of Impact Engineering, 2017, 108: 205–16. DOI: 10.1016/j.ijimpeng.2017.04.025. [16] PAN Z X, LI W, XIA Y. Experiments and 3D detailed modeling for a pouch battery cell under impact loading [J]. Journal of Energy Storage, 2020, 27: 101016. DOI: 10.1016/j.est.2019.101016. [17] CHEN X P, YUAN Q, WANG T, et al. Experimental study on the dynamic behavior of prismatic lithium-ion battery upon repeated impact [J]. Engineering Failure Analysis, 2020, 115: 104667. DOI: 10.1016/j.engfailanal.2020.104667. [18] XIA Y, CHEN G H, ZHOU Q, et al. Failure behaviours of 100% SOC lithium-ion battery modules under different impact loading conditions [J]. Engineering Failure Analysis, 2017, 82: 149–60. DOI: 10.1016/j.engfailanal.2017.09.003. [19] LIU Y J, XIA Y, XING B B, et al. Mechanical-electrical-thermal responses of lithium-ion pouch cells under dynamic loading: A comparative study between fresh cells and aged ones [J]. International Journal of Impact Engineering, 2022, 166: 104237. DOI: 10.1016/j.ijimpeng.2022.104237. [20] ZHENG G, TAN L L, TIAN G L, et al. Dynamic crashing behaviors of prismatic lithium-ion battery cells [J]. Thin-Walled Structures, 2023, 192: 110902. DOI: 10.1016/j.tws.2023.110902. [21] ZHOU M Z, HU L L, CHEN S R, et al. Different mechanical-electrochemical coupled failure mechanism and safety evaluation of lithium-ion pouch cells under dynamic and quasi-static mechanical abuse [J]. Journal of Power Sources, 2021, 497: 229897. DOI: 10.1016/j.jpowsour.2021.229897. [22] XU J, LIU B H, WANG X Y, et al. Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies [J]. Applied Energy, 2016, 172: 180–9. DOI: 10.1016/j.apenergy.2016.03.108. [23] JIA Y K, YIN S, LIU B H, et al. Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading [J]. Energy, 2019, 166: 951–60. DOI: 10.1016/j.energy.2018.10.142. [24] AVDEEV I, GILAKI M. Structural analysis and experimental characterization of cylindrical lithium-ion battery cells subject to lateral impact [J]. Journal of Power Sources, 2014, 271: 382–91. DOI: 10.1016/j.jpowsour.2014.08.014. [25] ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse [J]. Journal of Power Sources, 2015, 290: 102–13. DOI: 10.1016/j.jpowsour.2015.04.162. [26] ZHU J E, ZHANG X W, SAHRAEI E, et al. Deformation and failure mechanisms of 18650 battery cells under axial compression [J]. Journal of Power Sources, 2016, 336: 332–40. DOI: 10.1016/j.jpowsour.2016.10.064. [27] WANG L B, YIN S, XU J. A detailed computational model for cylindrical lithium-ion batteries under mechanical loading: From cell deformation to short-circuit onset [J]. Journal of Power Sources, 2019, 413: 284–92. DOI: 10.1016/j.jpowsour.2018.12.059. [28] WANG L B, DUAN X D, LIU B H, et al. Deformation and failure behaviors of anode in lithium-ion batteries: model and mechanism [J]. Journal of Power Sources, 2020, 448: 227468. DOI: 10.1016/j.jpowsour.2019.227468. [29] 李红刚, 张超, 曹俊超, 等. 锂离子电池碰撞安全仿真方法的研究进展与展望 [J]. 机械工程学报, 2022, 58(24): 121–44. DOI: 10.3901/JME.2022.24.121.LI H G, ZHANG C, CAO J C, et al. Research progress and prospect of collision safety simulation methods for lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(24): 121–44. DOI: 10.3901/JME.2022.24.121. [30] TIAN J Q, WANG Y J, CHEN Z H. An improved single particle model for lithium-ion batteries based on main stress factor compensation [J]. Journal of Cleaner Production, 2021, 278. DOI: 10.1016/j.jclepro.2020.123456. [31] SAHRAEI E, CAMPBELL J, WIERZBICKI T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions [J]. Journal of Power Sources, 2012, 220: 360–72. DOI: 10.1016/j.jpowsour.2012.07.057. [32] XU J, LIU B H, WANG L B, et al. Dynamic mechanical integrity of cylindrical lithium-ion battery cell upon crushing [J]. Engineering Failure Analysis, 2015, 53: 97–110. DOI: 10.1016/j.engfailanal.2015.03.025. [33] YUAN C H, WANG L B, YIN S, et al. Generalized separator failure criteria for internal short circuit of lithium-ion battery [J]. Journal of Power Sources, 2020, 467: 228360. DOI: 10.1016/j.jpowsour.2020.228360. [34] WANG H C, PAN Y J, LIU X, et al. Criteria and design guidance for lithium-ion battery safety from a material perspective [J]. Journal of Materials Chemistry A, 2022, 10(12): 6538–50. DOI: 10.1039/d1ta09291j. [35] JIA Y K, GAO X, MOUILLET J B, et al. Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach [J]. Journal of Energy Storage, 2021, 33: 102090. DOI: 10.1016/j.est.2020.102090. [36] LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse [J]. Journal of The Electrochemical Society, 2020, 167(12): 120501. DOI: 10.1149/1945-7111/aba96f. [37] YANG Z C, LI J Q, JIANG H F, et al. A novel model-based damage detection method for lithium-ion batteries [J]. Journal of Energy Storage, 2021, 42: 102970. DOI: 10.1016/j.est.2021.102970. [38] JIA Y K, GAO X, MA L, et al. Comprehensive battery safety risk evaluation: aged cells versus fresh cells uon mechanical abusive loadings [J]. Advanced Energy Materials, 2023, 13(24): 2300368. DOI: 10.1002/aenm.202300368. [39] CAI Z H, MENDOIZA S, GOODMAN J, et al. the influence of cycling, temperature, and electrode gapping on the safety of prismatic lithium-ion batteries [J]. Journal of The Electrochemical Society, 2020, 167(16): 160515. DOI: 10.1149/1945-7111/abcabc. [40] MAGNIER L, LECARME L, ALLOIN F, et al. Tomography imaging of lithium electrodeposits using neutron, synchrotron X-ray, and laboratory X-ray sources: a comparison [J]. Frontiers in Energy Research, 2021, 9: 657712. DOI: 10.3389/fenrg.2021.657712. [41] BOYCE A M, MARTÍNEZ-PAÑEDA E, WADE A, et al. Cracking predictions of lithium-ion battery electrodes by X-ray computed tomography and modelling [J]. Journal of Power Sources, 2022, 526: 231119. DOI: 10.1016/j.jpowsour.2022.231119. [42] ZINTH V, VON LÜDERS C, HOFMANN M, et al. Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction [J]. Journal of Power Sources, 2014, 271: 152–159. DOI: 10.1016/j.jpowsour.2014.07.168. [43] BOBRIKOV I A, SAMOYLOVA N Y, BALAGUROV D A, et al. Neutron diffraction analysis of structural transformations in lithium-ion batteries [J]. Russian Journal of Electrochemistry, 2017, 53(2): 178–186. DOI: 10.1134/S1023193517020033. [44] VOYIADJIS G Z, AKBARI E, KATTAN P I. Damage model for lithium-ion batteries with experiments and simulations [J]. Journal of Energy Storage, 2023, 57: 106285. DOI: 10.1016/j.est.2022.106285. [45] ZIESCHE R F, KARDJILOV N, KOCKELMANN W, et al. Neutron imaging of lithium batteries [J]. Joule, 2022, 6(1): 35–52. DOI: 10.1016/j.joule.2021.12.007. [46] YANG H X, SHAN C F, KOLEN A F, et al. Medical instrument detection in ultrasound: a review [J]. Artificial Intelligence Review, 2022, 56(5): 4363–4402. DOI: 10.1007/s10462-022-10287-1. [47] LIU W J, HU P, XIAO J F, et al. High precision detection of artificial defects in additively manufactured Ti6Al4V alloy via laser ultrasonic testing [J]. Journal of Materials Research and Technology, 2024, 30: 8740–8748. DOI: 10.1016/j.jmrt.2024.05.140. [48] LIAN Y D, DU F J, XIE L Y, et al. Application of laser ultrasonic testing technology in the characterization of material properties: a review [J]. Measurement, 2024, 234: 114855. DOI: 10.1016/j.measurement.2024.114855. [49] XUE Z Q, XU Y D, HU M, et al. Systematic review: ultrasonic technology for detecting rail defects [J]. Construction and Building Materials, 2023, 368: 130409. DOI: 10.1016/j.conbuildmat.2023.130409. [50] MENG K P, CHEN X P, ZHANG W, et al. A robust ultrasonic characterization methodology for lithium-ion batteries on frequency-domain damping analysis [J]. Journal of Power Sources, 2022, 547: 232003. DOI: 10.1016/j.jpowsour.2022.232003. [51] WEI Y L, YAN Y Z, ZHANG C, et al. State estimation of lithium-ion batteries based on the initial rise time feature of ultrasonic signals [J]. Journal of Power Sources, 2023, 581: 233497. DOI: 10.1016/j.jpowsour.2023.233497. [52] LADPLI P, KOPSAFTOPOULOS F, CHANG F K. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators [J]. Journal of Power Sources, 2018, 384: 342–354. DOI: 10.1016/j.jpowsour.2018.02.056. [53] POPP H, KOLLER M, KELLER S, et al. State estimation approach of lithium-ion batteries by simplified ultrasonic time-of-flight measurement [J]. IEEE Access, 2019, 7: 170992–171000. DOI: 10.1109/access.2019.2955556. [54] ZHAO G Q, LIU Y, LIU G, et al. State-of-charge and state-of-health estimation for lithium-ion battery using the direct wave signals of guided wave [J]. Journal of Energy Storage, 2021, 39: 102657. DOI: 10.1016/j.est.2021.102657. [55] LIU B H, TONG W H, CAO Y Z, et al. SOC estimation method based on the ultrasonic guided waves considering the significant effect of charge/discharge rate [J]. Journal of Energy Storage, 2024, 87: 111434. DOI: 10.1016/j.est.2024.111434. [56] LI X Y, HUA W, WU C X, et al. State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves [J]. Journal of Energy Storage, 2022, 56: 106113. DOI: 10.1016/j.est.2022.106113. [57] TIAN Y, YANG S Y, ZHANG R N, et al. State of charge estimation of lithium-ion batteries based on ultrasonic guided waves by chirped signal excitation [J]. Journal of Energy Storage, 2024, 84: 110897. DOI: 10.1016/j.est.2024.110897. [58] REICHMANN B, SHARIF-KHODAEI Z. Ultrasonic guided waves as an indicator for the state-of-charge of Li-ion batteries [J]. Journal of Power Sources, 2023, 576. DOI: 10.1016/j.jpowsour.2023.233189. [59] LI X Y, WU C X, FU C, et al. State characterization of lithium-ion battery based on ultrasonic guided wave scanning [J]. Energies, 2022, 15(16): 6027. DOI: 10.3390/en15166027. [60] GAO J, ZHANG L H, LYU Y, et al. Ultrasonic guided wave measurement and modeling analysis of the state of charge for lithium-ion battery [J]. Journal of Energy Storage, 2023, 72: 108384. DOI: 10.1016/j.est.2023.108384. [61] CIESZKO M, DRELICH R, PAKULA M. Acoustic wave propagation in equivalent fluid macroscopically inhomogeneous materials [J]. The Journal of the Acoustical Society of America, 2012, 132(5): 2970–2977. DOI: 10.1121/1.4756949. [62] CAO Y Z, WANG H C, LIU B H, et al. Modeling, validation, and analysis of swelling behaviors of lithium-ion batteries [J]. Journal of Energy Storage, 2023, 74: 109499. DOI: 10.1016/j.est.2023.109499. [63] LIAO Z Y, LI H G, WANG H C, et al. Mesoscale mechanical models for active materials in lithium-ion batteries using the multi-particle finite element method [J]. Extreme Mechanics Letters, 2024, 69: 102154. DOI: 10.1016/j.eml.2024.102154. -