聚醚醚酮壳体战斗部爆破威力试验

张腾月 肖川 陈鹏万 焦晓龙 吴宗娅 陈放

张腾月, 肖川, 陈鹏万, 焦晓龙, 吴宗娅, 陈放. 聚醚醚酮壳体战斗部爆破威力试验[J]. 爆炸与冲击, 2023, 43(9): 091414. doi: 10.11883/bzycj/2022-0477
引用本文: 张腾月, 肖川, 陈鹏万, 焦晓龙, 吴宗娅, 陈放. 聚醚醚酮壳体战斗部爆破威力试验[J]. 爆炸与冲击, 2023, 43(9): 091414. doi: 10.11883/bzycj/2022-0477
ZHANG Tengyue, XIAO Chuan, CHEN Pengwan, JIAO Xiaolong, WU Zongya, CHEN Fang. Experimental study on the lethality of blasting warhead with PEEK shell[J]. Explosion And Shock Waves, 2023, 43(9): 091414. doi: 10.11883/bzycj/2022-0477
Citation: ZHANG Tengyue, XIAO Chuan, CHEN Pengwan, JIAO Xiaolong, WU Zongya, CHEN Fang. Experimental study on the lethality of blasting warhead with PEEK shell[J]. Explosion And Shock Waves, 2023, 43(9): 091414. doi: 10.11883/bzycj/2022-0477

聚醚醚酮壳体战斗部爆破威力试验

doi: 10.11883/bzycj/2022-0477
详细信息
    作者简介:

    张腾月(1989- ),女,博士研究生,10140528@qq.com

    通讯作者:

    肖 川(1966- ),男,研究员,hll8611@126.com

  • 中图分类号: O389; TG156

Experimental study on the lethality of blasting warhead with PEEK shell

  • 摘要: 为了验证聚醚醚酮(polyether ether ketone, PEEK)作为低附带毁伤战斗部壳体材料的可行性,设计了等厚度聚醚醚酮壳体和2A12铝制壳体作为爆破战斗部外壳。通过静爆威力对比试验,并结合峰值超压测试及高速摄影技术,对超压、比冲量及破片情况进行综合分析。试验结果表明,相同壳体厚度的聚醚醚酮壳体战斗部较2A12铝壳体战斗部质量减轻了一半以上,对人员超压毁伤半径几乎一致,聚醚醚酮壳体战斗部爆轰能量更多转化为冲击波能,且随着比例距离增加,比冲量高于2A12铝;聚醚醚酮壳体在爆炸载荷作用下破碎形成小破片,试验后仅回收到一枚边缘烧蚀的破片。可认为破片飞散时在爆轰产物高温高压作用下全部燃烧,聚醚醚酮壳体不产生杀伤破片,破片附带损伤小。战斗部壳体可采用聚醚醚酮材料,有效控制毁伤范围,满足城市作战中低附带毁伤效果需求。
  • 图  1  试验布置

    Figure  1.  Experimental setup

    图  2  壳体和端盖装配图

    Figure  2.  Housing and end cap assembly drawings

    图  3  铝壳战斗部的冲击波超压随时间的变化曲线

    Figure  3.  Time dependent curves of shock wave overpressure in aluminum shell warheads

    图  4  聚醚醚酮壳战斗部的冲击波超压随时间的变化曲线

    Figure  4.  Time dependent curves of shock wave overpressure in PEEK shell warheads

    图  5  距爆心不同比例距离的超压峰值

    Figure  5.  Peak Overpressures at different scaled distances from the explosion center

    图  6  距爆心不同比例距离处的比冲量

    Figure  6.  Specific impulse at different scaled distancesfrom the explosion center

    图  7  不同时刻破片的飞散过程

    Figure  7.  Fragment dispersion process at different times

    图  8  试验件

    Figure  8.  Test pieces

    图  9  聚醚醚酮点燃瞬间

    Figure  9.  Moments of ignition of PEEK

    图  10  回收的破片

    Figure  10.  Recovered fragments

    表  1  被试品主要参数

    Table  1.   Main parameters of the tested product

    壳体参数
    材料 厚度/mm 质量/kg
    聚醚醚酮 2.5 0.12
    2A12铝 2.5 0.26
    下载: 导出CSV

    表  2  破片速度测试结果

    Table  2.   Fragment speed test results

    壳体材料测速靶与爆心的
    距离/m
    破片到达
    时间/ms
    破片速度/
    (m·s−1)
    2A12铝3 1.182542.4
    4 3.091294.5
    5 7.09705.2
    620.61291.1
    PEEK3 2.131408.5
    4 2.961351.4
    5
    6
    下载: 导出CSV
  • [1] 陈志鹏, 马福临, 杨娜娜, 等. 破片群作用下复合材料层合板近场动力学损伤模拟 [J]. 爆炸与冲击, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081.

    CHEN Z P, MA F L, YANG N N, et al. Peridynamic damage simulation of composite structures subjected to fragment clusters [J]. Explosion and Shock Waves, 2022, 42(3): 033303. DOI: 10.11883/bzycj-2021-0081.
    [2] DENG G Q, YU X. Numerical study on the case effect of a bomb air explosion [J]. Defence Technology, 2021, 17(4): 1461–1470. DOI: 10.1016/j.dt.2020.08.003.
    [3] XU W L , WANG C , YUAN J M , et al. Investigation on energy output structure of explosives near-ground explosion [J]. Defence Technology, 2019, 16(2): 290–298. DOI: 10.1016/j.dt.2019.08.004.
    [4] 何翔, 杨建超, 王晓峰, 等. 常规战斗部动爆威力研究综述 [J]. 防护工程, 2022, 44(1): 1–9. DOI: 10.3969/j.issn.1674-1854.2022.01.001.

    HE XIANG, YANG J C, WANG X F, et al. Overview of conventional warhead dynamic explosion power research [J]. Protective Engineering, 2022, 44(1): 1–9. DOI: 10.3969/j.issn.1674-1854.2022.01.001.
    [5] 初善勇. 杀伤爆破弹毁伤威力等效评估研究[D]. 沈阳: 沈阳理工大学, 2020.

    CHU S Y. Study on the equivalent evaluation of the damage power of the high explosive projectile [D]. Shenyang: Shenyang Ligong University, 2020.
    [6] 陈永新. 美国发展低附带毁伤战斗部技术[C]//战斗部与毁伤效率专业委员会第十届学术年会论文集, 2007: 21–24.
    [7] 霍奕宇, 王坚茹, 陈智刚, 等. 低附带毁伤战斗部壳体壁厚的优化设计[J]. 兵器材料科学与工程, 2015, 38(5): 89–93. DOI: 10.14024/j.cnki.1004-244x.20150915.002.

    HUO Y Y, WANG J R, CHEN Z G, et al. Optimized design of case thickness for low collateral damage warhead [J]. Ordnance Material Science and Engineering, 2015, 38(5): 89–93. DOI: 10.14024/j.cnki.1004-244x.20150915.002.
    [8] 朱亮. 低附带毁伤弹药设计及毁伤原理分析[D]. 南京: 南京理工大学, 2011.

    ZHU L. Design and damage principle analysis of low incidental damage ammunition [D]. Nanjing: Nanjing University of Science and Technology, 2011.
    [9] 黄德雨, 张云逸, 王坚茹, 等. 低附带陶瓷球形破片衰减规律研究 [J]. 弹箭与制导学报, 2011, 31(1): 100–102. DOI: 10.3969/j.issn.1673-9728.2011.01.028.

    HUANG D Y, ZHANG Y Y, WANG J R, et al. A study on distance decay of spherical ceramic fragments with low collateral damage [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(1): 100–102. DOI: 10.3969/j.issn.1673-9728.2011.01.028.
    [10] 刘俊, 姚文进, 郑宇, 等. 低附带毁伤弹药的炸药/钨粉质量比对钨粉抛撒特性的影响[J]. 含能材料, 2015, 23(3): 258–264. DOI: 10.11943/j.issn.1006-9941.2015.03.011.

    LIU J, YAO W J, ZHENG Y, et al. Effect of explosive/tungsten power mass ratio for LCD ammunition on dispersal characteristics of tungsten power [J]. Chinese Journal of Energetic Materials, 2015, 23(3): 258–264. DOI: 10.11943/j.issn.1006-9941.2015.03.011.
    [11] 杨秉妍, 范瑞军, 江自生, 等. 活性元对低附带毁伤弹药的近场超压增强效应/钨粉质量比对钨粉抛撒特性的影响[J]. 高压物理学报, 2022, 36(6): 164–172. DOI: 10.11858/gywlxb.20220568.

    YANG B Y, FAN R J, JIANG Z S, et al. Effect of near-field overpressure enhancement of reactive material on low collateral damage ammunition [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 164–172. DOI: 10.11858/gywlxb.20220568.
    [12] 梁斌, 陈忠富, 卢永刚, 等. 不同材料壳体装药对爆破威力影响分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 429–433. DOI: 10.7666/j.issn.1009-3443.20070505.

    LIANG B, CHEN Z F, LU Y G, et al. Investigation of blast effect of explosive charge with different shell material[J]. Journal of PLA University of Science and Technology, 2007, 8(5): 429–433. DOI: 10.7666/j.issn.1009-3443.20070505.
    [13] 梁斌, 卢永刚, 杨世全, 等. 不同壳体装药爆炸威力的数值模拟及试验研究[J]. 火炸药学报, 2008, 31(1): 6–11, 15. DOI: 10.3969/j.issn.1007-7812.2008.01.002.

    LAING B, LU Y G, YANG S Q, et al. Numerical simulation and experiment investigation of blast effect of explosive charge with different shell materials [J]. Chinese Journal of Explosives and Propellants, 2008, 31(1): 6–11, 15. DOI: 10.3969/j.issn.1007-7812.2008.01.002.
    [14] 姚文进, 王晓鸣, 李文彬, 等. 低附带毁伤弹药爆炸威力的理论分析与试验研究/钨粉质量比对钨粉抛撒特性的影响[J]. 火炸药学报, 2009, 32(2): 21–24. DOI: 10.14077/j.issn.1007-7812.2009.02.011.

    YAO W J, WANG X M, LI W B, et al. Theory analysis and experiment research on blast effect of low collateral damage ammunition [J]. Chinese Journal of Explosives and Propellants, 2009, 32(2): 21–24. DOI: 10.14077/j.issn.1007-7812.2009.02.011.
    [15] 杨世全, 孙传杰, 钱立新, 等. 非金属壳体低附带战斗部试验与破片飞散分析/钨粉质量比对钨粉抛撒特性的影响[J]. 高压物理学报, 2018, 32(4): 134–138. DOI: 10.11858/gywlxb.20170573.

    YANG S Q, SUN C J, QIAN L X, et al. Experimentation and fragment flight analysis of low-collateral-damage warhead with nonmetal shell [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 134–138. DOI: 10.11858/gywlxb.20170573.
    [16] 左腾. CFRP壳体低附带毁伤性能研究[D]. 北京: 北京理工大学, 2016.

    ZUO T. Study on the low collateral damage performance of CFRP shell structure [D]. Beijing: Beijing Institute of Technology, 2016.
    [17] 申超. 重金属粉末嵌层CFRP壳体内爆下低附带毁伤特性表征[D]. 北京: 北京理工大学, 2015.

    SHEN C. The low collateral damage characterization of CFRP shell structure with heavy mental powder embedded as a layer under implosion [D]. Beijing: Beijing Institute of Technology, 2015.
    [18] 田春雷. CFRP中厚壁圆筒的动力学行为及其低附带毁伤效应研究[D]. 北京: 北京理工大学, 2014.

    TIAN C L. Research on dynamical mechanics behavior and low collateral damage effects of moderate thick-walled CFRP shells [D]. Beijing: Beijing Institute of Technology, 2014.
    [19] 刘俊聪, 刘爱云, 李树虎, 等. 聚醚醚酮复合材料改性研究进展[J]. 工程塑料应用, 2022, 50(2): 169–174. DOI: 10.3969/j.issn.1001-3539.2022.02.030.

    LIU J C, LIU A Y, LI S H, et al. Research progress on modefication of PEEK composite [J]. Engineering Plastics Application, 2022, 50(2): 169–174. DOI: 10.3969/j.issn.1001-3539.2022.02.030.
    [20] 刘全义, 彭孝亮, 王东辉, 等. 聚醚醚酮的燃烧性能及其非等温热分解动力学[J]. 合成树脂及塑料, 2022, 39(3): 27–30. DOI: 10.19825/j.issn.1002-1396.2022.03.06.

    LIU Q Y, PENG X L, WANG D H, et al. Combustion properties and non-isothermal thermal decomposition kinetics of PEEK [J]. China Synthetic Resin and Plastics, 2022, 39(3): 27–30. DOI: 10.19825/j.issn.1002-1396.2022.03.06.
    [21] 刘湲秋, 汪清漩, 陆懿琳, 等. 聚醚醚酮涂层制备、改性及应用的研究综述[J]. 塑料工业, 2020, 48(10): 1–7. DOI: 10.3969/j.issn.1005-5770.2020.10.001.

    LIU Y Q, WANG Q X, LU Y L, et al. A review of the preparation, modification and application of PEEK coating [J]. China Plastics Industry, 2020, 48(10): 1–7. DOI: 10.3969/j.issn.1005-5770.2020.10.001.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  71
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2023-05-04
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-09-11

目录

    /

    返回文章
    返回