• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

内爆加载金属界面不稳定性的数值分析

郝鹏程 冯其京 胡晓棉

郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析[J]. 爆炸与冲击, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
引用本文: 郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析[J]. 爆炸与冲击, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
Hao Pengcheng, Feng Qijing, Hu Xiaomian. A numerical study of the instability of the metal shell in the implosion[J]. Explosion And Shock Waves, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06
Citation: Hao Pengcheng, Feng Qijing, Hu Xiaomian. A numerical study of the instability of the metal shell in the implosion[J]. Explosion And Shock Waves, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06

内爆加载金属界面不稳定性的数值分析

doi: 10.11883/1001-1455(2016)06-0739-06
基金项目: 

国家自然科学基金项目 11372052

国家自然科学基金项目 U1430235

国家自然科学基金项目 11402029

中国工程物理研究院科学技术发展基金项目 2015B0101021

国家自然科学基金项目 11371069

详细信息
    作者简介:

    郝鹏程(1980—),男,博士研究生,副研究员, hao_pengcheng@iapcm.ac.cn

  • 中图分类号: O357.41

A numerical study of the instability of the metal shell in the implosion

  • 摘要: 采用自行研制的多介质弹塑性流体力学欧拉程序,对柱形内爆加载金属界面不稳定性进行了数值研究,数值模拟结果与文献实验数据吻合较好。数值结果表明:材料强度对界面不稳定性发展有不可忽略的抑制作用;材料屈服强度对较高模数不稳定性增长的抑制较强,而剪切模量对不稳定性发展的影响相似但敏感性相对较弱;金属界面不稳定性增长存在最不稳定模数,最不稳定模数随屈服强度增加而减小,并近似与屈服强度的对数呈线性关系;随着壳的厚度减小,扰动增长加快。
  • 图  1  柱形内爆计算模型

    Figure  1.  Computational model in cylindrical implosion

    图  2  金属壳外壁压力

    Figure  2.  Pressure on outer interface of metal shell

    图  3  金属壳内壁速度

    Figure  3.  Velocity on inner interface of metal shell

    图  4  密度等值云图(n=29)

    Figure  4.  Density contour plot

    图  5  金属界面扰动增长

    Figure  5.  Growth of metal interfacial perturbation amplitude

    图  6  材料屈服强度对界面扰动增长的影响

    Figure  6.  Effect of yield strength on perturbation growth

    图  7  材料剪切模量对界面扰动增长的影响

    Figure  7.  Effect of shear strength on perturbation growth

    图  8  不同屈服强度下扰动模数与扰动增长的关系

    Figure  8.  Effect of perturbation mode on perturbation growth under different yield strength

    图  9  最不稳定模数与屈服强度的关系

    Figure  9.  Relationship between yield strength and most instable mode

    图  10  不同金属壳厚度下的扰动增长

    Figure  10.  Effect of shell thickness on perturbation growth

    图  11  不同金属壳厚度下最不稳定模数与屈服强度的关系

    Figure  11.  Relationship between yield strength andmost instable mode with different shell thicknesses

  • Piriz A R, Lopez Cela J J, Tahir N A, et al. Richtmyer-Meshkov instability in elastic-plastic media[J]. Physical Review E, 2008, 78(5):056401. doi: 10.1103/PhysRevE.78.056401
    Piriz A R, Lopez Cela J J, Tahir N A. Linear analysis of incompressible Rayleigh-Taylor instability in solids[J]. Physical Review E, 2009, 80(4):046305. doi: 10.1103/PhysRevE.80.046305
    Miles J W. Taylor instability of a flat plate[R]. San Diego: General Dynamics, GAMD-7335, 1966.
    Drucker D C. "Taylor instability" of the surface of an elastic-plastic plate[C]//Nemat-Nasser C. Mechanics Today, Vol. 5. New York: Pergamon Press, 1980: 37-47.
    Lebedev A I, Nizovtsev P N, Rayevsky V A. Rayleigh-Taylor instability in solids[C]//4th International Workshop on the Physics of Compressible Turbulent Mixing (IWPCTM). Cambridge, England, 1993.
    Barnes J F, Blewett P J, McQueen R G, et al. Taylor instability in solids[J]. Journal of Applied Physics, 1974, 45(2):727-732. doi: 10.1063/1.1663310
    Swegle J W, Robinson A C. Acceleration instability in elastic-plastic solids. I. Numerical simulations of plate acceleration[J]. Journal of Applied Physics, 1989, 66(7):2838-2858. doi: 10.1063/1.344190
    Mikaelian K. Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities[J]. Physical Review E, 1993, 47(1):375-383. doi: 10.1103/PhysRevE.47.375
    Colvin J D, Legrand M, Remington B A, et al. A model for instability growth in accelerated solid metals[J]. Journal of Applied Physics, 2003, 93(9):5287-5301. doi: 10.1063/1.1565188
    Atchison W L, Zocher M A, Kaul A M. Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems[J]. Russian Journal of Physical Chemistry B, 2008, 2(3):387-401. doi: 10.1134/S199079310803010X
    Dimonte G, Terrones G, Cheme F J, et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy density[J]. Physical Review Letters, 2011, 107(26):264502. doi: 10.1103/PhysRevLett.107.264502
    Frachet V, Geleznikoff F, Guix R, et al. Rayleigh Taylor instability in cylindrical configuration[C]//2nd International Workshop on the Physics of Compressible Turbulent Mixing (IWPCTM). Pleasanton, CA, 1989.
    Park H S, Lorenz K T, Cavallo R M, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Physical Review Letters, 2010, 104(13):135504. doi: 10.1103/PhysRevLett.104.135504
    刘军, 冯其京, 周海兵.柱面内爆驱动金属界面不稳定性的数值模拟研究[J].物理学报, 2014, 63(15):155201. doi: 10.7498/aps.63.155201

    Liu Jun, Feng Qijing, Zhou Haibing. Simulation study of interface instability in metals driven by cylindrical implosion[J]. Acta Physica Sinica, 2014, 63(15):155201. doi: 10.7498/aps.63.155201
    冯其京, 郝鹏程, 杭义洪, 等.聚能装药的欧拉数值模拟[J].爆炸与冲击, 2008, 28(2):138-143. doi: 10.3321/j.issn:1001-1455.2008.02.007
  • 期刊类型引用(5)

    1. 高士清,邹立勇,唐久棚,李季,林健宇. 高马赫数激波作用下单模界面的Richtmyer-Meshkov不稳定性数值模拟. 爆炸与冲击. 2024(07): 38-58 . 本站查看
    2. 陈涵,甘元超,彭建祥,俞宇颖,胡建波. 固体界面不稳定性的研究现状、应用及挑战. 力学进展. 2024(04): 771-822 . 百度学术
    3. 王涛,汪兵,林健宇,柏劲松,李平,钟敏,陶钢. 金属锡Rayleigh-Taylor不稳定性对模型参数敏感性的数值分析. 高压物理学报. 2020(02): 24-32 . 百度学术
    4. 王涛,汪兵,林健宇,钟敏,柏劲松,李平,陶钢. 柱形汇聚几何中内爆驱动金属界面不稳定性. 爆炸与冲击. 2020(05): 4-15 . 本站查看
    5. 李碧勇,彭建祥,谷岩,尹晓春,贺红亮. 高纯铜界面Rayleigh-Taylor不稳定性扰动增长的数值模拟. 兵工学报. 2020(09): 1809-1816 . 百度学术

    其他类型引用(2)

  • 加载中
推荐阅读
活性材料与炸药环状复合内爆的准静态压力计算方法
朱剑雷 等, 爆炸与冲击, 2025
高应变率载荷下纯钛的非连续冲击疲劳失效模型及其微观机理
惠煜中 等, 爆炸与冲击, 2024
强冲击载荷下单向加筋板拉伸撕裂的临界条件
姚熊亮 等, 爆炸与冲击, 2024
Ta2/az31b/2024al爆炸焊接复合板界面微观结构特征及其动态力学性能
梁汉良 等, 爆炸与冲击, 2024
热塑性纤维金属层合板舱内爆炸响应数值模拟
周沪 等, 高压物理学报, 2022
负压爆炸载荷作用下固支钢板变形研究
杨锐 等, 高压物理学报, 2023
冲击载荷下平板玻璃裂纹扩展和破坏形态的数值模拟
王木飞 等, 高压物理学报, 2022
Antimicrobial peptides as new tools to combat infectious diseases
Sebok, Csilla et al., MAGYAR ALLATORVOSOK LAPJA, 2024
Phase-field simulation of nano-a ' precipitates under irradiation and dislocations
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
Dynamic response mechanism of thin-walled plate under confined and unconfined blast loads
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024
Powered by
图(11)
计量
  • 文章访问数:  4375
  • HTML全文浏览量:  1172
  • PDF下载量:  573
  • 被引次数: 7
出版历程
  • 收稿日期:  2015-04-30
  • 修回日期:  2015-08-17
  • 刊出日期:  2016-11-25

目录

    /

    返回文章
    返回