• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

鸟体姿态对结构抗鸟撞性能的影响

寇剑锋 徐绯 纪三红 张笑宇

寇剑锋, 徐绯, 纪三红, 张笑宇. 鸟体姿态对结构抗鸟撞性能的影响[J]. 爆炸与冲击, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08
引用本文: 寇剑锋, 徐绯, 纪三红, 张笑宇. 鸟体姿态对结构抗鸟撞性能的影响[J]. 爆炸与冲击, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08
Kou Jianfeng, Xu Fei, Ji Sanhong, Zhang Xiaoyu. Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures[J]. Explosion And Shock Waves, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08
Citation: Kou Jianfeng, Xu Fei, Ji Sanhong, Zhang Xiaoyu. Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures[J]. Explosion And Shock Waves, 2017, 37(5): 937-944. doi: 10.11883/1001-1455(2017)05-0937-08

鸟体姿态对结构抗鸟撞性能的影响

doi: 10.11883/1001-1455(2017)05-0937-08
基金项目: 

高等学校学科创新引智计划项目 B07050

详细信息
    作者简介:

    寇剑锋(1984—),男,博士研究生

    通讯作者:

    徐绯,E-mail:xufei@nwpu.edu.cn

  • 中图分类号: O383.3;V215.2

Influence of bird yaw/pitch orientation on bird-strike resistance of aircraft structures

  • 摘要: 低于现行标准规定能量的大量鸟撞事故中,航空结构仍然发生实质性破坏的情况,说明只考虑鸟体的质量和速度不足以保证飞机安全。本文中针对弹性平板、雷达罩及机翼前缘等飞机典型结构,开展了不同姿态鸟体的鸟撞分析研究。分析结果发现,鸟体姿态对结构的抗鸟撞性能有比较显著的影响,不同的结构特点反映的响应规律也不同:对吸能结构,姿态角越大,吸收的能量越多,被保护的结构就越安全;而对承力结构,姿态角越大,高应力区域越大,结构就越危险。因此,在结构的抗鸟撞安全性评估中,除了完成特定姿态鸟体的鸟撞实验,针对危险工况还应通过数值分析评估不同鸟体姿态的结构撞击响应,进一步确保结构的抗鸟撞能力。
  • 图  1  实验中鸟体俯仰旋转

    Figure  1.  Pitch rotation of bird in bird-strike experiment

    图  2  斜撞角和姿态角

    Figure  2.  Angle of oblique impact and bird orientation

    图  3  不同俯仰姿态的鸟体撞击模型

    Figure  3.  Numerical models of bird-strike ofdifferent bird pitch angles

    图  4  鸟体撞击力

    Figure  4.  Impact force of bird-strike

    图  5  板吸收的能量

    Figure  5.  Energy absorbed by panel

    图  6  不同鸟体姿态的板的应力分布

    Figure  6.  Plate stress contour of different bird orientations

    图  7  应力监测点位置

    Figure  7.  Monitoring position of panel stress

    图  8  监测点最大应力值

    Figure  8.  Maximum stresses in monitoring positions

    图  9  雷达罩结构示意图

    Figure  9.  Structural diagram of radome

    图  10  不同姿态下计算结果与实验结果对比

    Figure  10.  Comparison of numerical and experimental results

    图  11  DM处位移

    Figure  11.  Displacement of DM

    图  12  不同姿态下雷达罩吸收的能量

    Figure  12.  Energy absorption by radome

    图  13  机翼前缘变形

    Figure  13.  Deformation of wing leading edge

    图  14  机翼前梁应变

    Figure  14.  Strain of front beam

    表  1  不同鸟体姿态在监测点应力与0°的偏差

    Table  1.   Deviation of panel stress between 0° orientation and the others

    α/(°) ηmax/% ηA/% ηB/% ηC/% ηD/% ηE/%
    22.5 -4.1 2.0 -0.6 2.6 -1.5 -1.3
    45.0 -2.5 0.8 1.0 11.7 6.1 0
    67.5 1.4 8.5 4.0 28.9 19.2 18.7
    90.0 3.6 25.5 7.3 109.7 75.8 55.0
    下载: 导出CSV

    表  2  非金属材料参数

    Table  2.   Parameters of non-metallic material

    量和单位 玻璃纤维增强材料 蜂窝材料
    ρ/(kg·m-3) 1 900 64
    E11/MPa 27 300 -
    E22/MPa 26 500 -
    E33/MPa - 71.68
    G12/MPa 4 390 -
    G13/MPa - 76.11
    G23/MPa - 35.44
    X1c/MPa 309 -
    X1t/MPa 642.9 -
    X2c/MPa 363 -
    X2t/MPa 614 -
    S12/MPa 221 -
    X3c/MPa - 3.84
    X3t/MPa - 4.32
    X13/MPa - 2.14
    X23/MPa - 2.01
    下载: 导出CSV

    表  3  金属材料参数

    Table  3.   Parameters of metallic material

    材料 ρ/(kg·m-3) E /GPa σs/MPa εf
    7050-T7451 2 820 70 448 0.095
    LY12-CZ 2 780 71 424 0.127
    2024-T351 2 780 70 310 0.089
    7075-T7351 2 800 72 395 0.086
    下载: 导出CSV
  • [1] Barber J P, Taylor H R, Wilbeck J S. Characterization of bird impacts on a rigid plate: Part 1[R]. AFFDL-TR-75-5, 1975.
    [2] Barber J P, Taylor H R, Wilbeck J S. Bird impact forces and pressures on rigid and compliant targets[R]. AFFDL-TR-77-60, 1978.
    [3] Wilbeck J S. Impact behavior of low strength projectiles[R]. AFML-TR-77-134, 1977. https://www.researchgate.net/publication/235048505_Impact_Behavior_of_Low_Strength_Projectiles
    [4] Lavoiea M A, Gakwaya A, Nejad Ensan M, et al. Bird's substitute tests results and evaluation of available numerical methods[J]. International Journal of Impact Engineering, 2009, 36(10):1276-1287. doi: 10.1016-j.ijimpeng.2009.03.009/
    [5] Hedayati R, Sadighi M, Mohammadi-Aghdam M. On the difference of pressure readings from the numerical, experimental and theoretical results in different bird strike studies[J]. Aerospace Science and Technology, 2014, 32(1):260-266. doi: 10.1016/j.ast.2013.10.008
    [6] Lavoiea M A, Gakwaya A, Ensan M N, et al. Review of existing numerical methods and validation procedure available for bird strike modeling[C]//International Conference on Computational and Experimental Engineering and Science-2007. 2007: 111-118.
    [7] Mccarthy M A, Xiao J R, Mccarthy C T, et al. Modelling of bird strike on an aircraft wing leading edge made from fibre metal laminates-Part 2: Modelling of impact with SPH bird model[J]. Applied Composite Materials, 2004, 11(5):317-340. doi: 10.1023/B:ACMA.0000037134.93410.c0
    [8] Guidaa M, Marulo F, Meo M, et al. SPH-Lagrangian study of bird impact on leading edge wing[J]. Composite Structures, 2011, 93(3):1060-1071. doi: 10.1016/j.compstruct.2010.10.001
    [9] Mccallum S C, Constantinou C. The influence of bird-shape in bird-strike analysis[C]//5th European LS-DYNA users conference. Birmingham, UK, 2005. https://www.dynalook.com/conferences/european-conf-2005/Mccallum.pdf
    [10] Meguid S A, Mao R H, Ng T Y. FE analysis of geometry effects of an artificial birdstriking an aeroengine fan blade[J]. International Journal of Impact Engineering, 2008, 35(6):487-498. doi: 10.1016/j.ijimpeng.2007.04.008
    [11] 刘军, 李玉龙, 石霄鹏, 等.鸟体本构模型参数反演Ⅱ:模型参数反演研究[J].航空学报, 2011, 32(5):812-821. http://d.old.wanfangdata.com.cn/Periodical/hkxb201105005

    Liu Jun, Li Yulong, Shi Xiaopeng, et al. Parameters inversion on bird constitutive model. Part Ⅱ: Study on model parameters inversion[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):812-821. http://d.old.wanfangdata.com.cn/Periodical/hkxb201105005
    [12] Nizampatnam L S. Investigation of equation of state models for predicting[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2008.
    [13] Sebastian H. Computational methods for bird strike simulations: A review[J]. Computers and Structures, 2011, 89(23):2093-2112. http://d.old.wanfangdata.com.cn/Periodical/fjjs201805006
    [14] Reza H, Saeed Z R. A new bird model and the effect of bird geometry in impacts from various orientation[J]. Aerospace Science and Technology, 2013, 28(1):9-20. doi: 10.1016/j.ast.2012.09.002
    [15] Federal Aviation Administration. Bird strike requirements for transport category airplanes: Proposed rules[J]. Federal Register, 2015, 80(138):42753-42756.
    [16] 陈园方, 李玉龙, 刘军, 等.典型前缘结构抗鸟撞性能改进研究[J].航空学报, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012

    Chen Yuanfang, Li Yulong, Liu Jun, et al. Study of bird strike on an improved leading edge structure[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1781-1787. http://d.old.wanfangdata.com.cn/Periodical/hkxb201009012
  • 期刊类型引用(5)

    1. 杨轶民,许晓宁,王永虎. 无人机机翼鸟撞下的气动特性变化数值分析. 湖北工业职业技术学院学报. 2022(04): 79-84 . 百度学术
    2. 张永强,贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效. 高压物理学报. 2022(05): 77-87 . 百度学术
    3. 郭鹏,刘志远,张桂昌,Reza Hedayati,张俊红. 鸟撞过程中撞击位置与撞击姿态对风扇叶片损伤影响研究. 振动与冲击. 2021(12): 124-131 . 百度学术
    4. 张俊红,刘志远,戴胡伟,Reza Hedayati,袁一,张桂昌. 撞击位置与风扇转速对鸟撞过程的影响. 天津大学学报(自然科学与工程技术版). 2020(05): 492-501 . 百度学术
    5. 郭亚周,刘小川,白春玉,王计真,郭军. 机翼前缘局部填充泡沫铝抗鸟撞特性. 科学技术与工程. 2020(08): 3348-3355 . 百度学术

    其他类型引用(3)

  • 加载中
推荐阅读
主体结构荷载可控的新型组合式防护结构(ⅱ):影响因素及设计理念
方秦 等, 爆炸与冲击, 2025
剪切增稠液填充蜂窝夹芯板的低速冲击响应
李雨薇 等, 爆炸与冲击, 2025
Uhmwpe背板厚度对铝复合板抗侵彻增强效应分析
杨可谞 等, 爆炸与冲击, 2024
3d打印点阵夹芯结构冲击损伤的近场动力学模拟
陈洋 等, 爆炸与冲击, 2024
基于abaqus的托换结构受力性能分析
岳庆霞 等, 计算机辅助工程, 2023
基于voronoi的不规则点阵结构建模及其力学性能分析
郝博 等, 工具技术, 2024
考虑起竖角度曲线影响的俯仰机构优化设计
袁毅 等, 机械传动, 2024
Effects of high-pressure homogenization on the physicochemical, foaming, and emulsifying properties of chickpea protein
Ma, Yigang et al., FOOD RESEARCH INTERNATIONAL, 2023
Optimization of thermal-fluid-structure coupling for variable-span inflatable wings considering case correlation
AEROSPACE SCIENCE AND TECHNOLOGY, 2024
Performance evaluation of inerter-based dampers for vortex-induced vibration control of long-span bridges: a comparative study
STRUCTURAL CONTROL & HEALTH MONITORING, 2020
Powered by
图(14) / 表(3)
计量
  • 文章访问数:  4335
  • HTML全文浏览量:  1361
  • PDF下载量:  209
  • 被引次数: 8
出版历程
  • 收稿日期:  2016-01-22
  • 修回日期:  2016-05-11
  • 刊出日期:  2017-09-25

目录

    /

    返回文章
    返回