岩石界面的动态剪切扩散行为

陈美多 张祥林 袁良柱 赵巨岩 王鹏飞 马昊 徐松林

陈美多, 张祥林, 袁良柱, 赵巨岩, 王鹏飞, 马昊, 徐松林. 岩石界面的动态剪切扩散行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0469
引用本文: 陈美多, 张祥林, 袁良柱, 赵巨岩, 王鹏飞, 马昊, 徐松林. 岩石界面的动态剪切扩散行为[J]. 爆炸与冲击. doi: 10.11883/bzycj-2023-0469
CHEN Meiduo, ZHANG Xianglin, YUAN Liangzhu, ZHAO Juyan, WANG Pengfei, MA Hao, XU Songlin. Rough surface morphology of granite subjected to dynamic friction[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0469
Citation: CHEN Meiduo, ZHANG Xianglin, YUAN Liangzhu, ZHAO Juyan, WANG Pengfei, MA Hao, XU Songlin. Rough surface morphology of granite subjected to dynamic friction[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0469

岩石界面的动态剪切扩散行为

doi: 10.11883/bzycj-2023-0469
基金项目: 国家自然科学基金(11672286,11872361,12372372);高压物理与地震科技联合实验室开放基金(2019HPPES01);中石油与中科院重大战略合作项目(2015A-4812);中央高校基本科研业务费专项资金(WK2480000008)
详细信息
    作者简介:

    陈美多(1999— ),男,博士研究生,mdchen@mail.ustc.edu.cn

    通讯作者:

    徐松林(1971— ),男,博士,研究院,博士生导师,slxu99@ustc.edu.cn

  • 中图分类号: O347.3

Rough surface morphology of granite subjected to dynamic friction

  • 摘要: 动载荷下剪切失稳控制的扩散行为是岩石局部大变形发展和宏观力学性能劣化的诱因。基于广义变分原理,建立剪切载荷作用下界面动态失稳的力学模型,得到了关于界面失稳的判别式和扩散方程。基于判别方程得到剪切力和动力效应对失稳界面角度的影响,结果表明:随着外部剪切作用力的增大,剪切变形带角度有一定程度的增大;随着局部动力系数的增大,即局部惯性作用力的增大,剪切带角度明显减小。结合本征位移求解扩散方程,初步得到其位移解析表达,随着加载时间的增加,位移逐渐增大。为了验证理论模型的可靠性,并进一步研究界面失稳的变形行为和对波传播的影响,建立了数值分析模型。分析结果表明:界面失稳为局部剪切破坏滑移的先导条件;界面厚度和剪切力越大,局部位移越大;界面剪切扩散行为极大降低了透射波的幅值,同时也改变了透射波的频率。研究结果可为岩石局部化变形、岩石动态强度等研究提供理论参考。
  • 图  1  剪切局部化失稳模型

    Figure  1.  Shear localized instability model

    图  2  剪切带角度的动力学影响

    Figure  2.  Dynamic influence of shear band angle

    图  3  冲击作用下剪切局部变形带角度的二阶近似求解

    Figure  3.  Second-order approximate solution of shear local deformation zone angle under impact

    图  4  局部化失稳模型

    Figure  4.  Localized instability model

    图  5  界面失稳形貌随剪应力的变化规律

    Figure  5.  Variation of interface instability morphology with shear stress

    图  6  随着厚度变化的界面失稳形貌

    Figure  6.  Interface instability morphology with thickness variation

    图  7  有限元计算模型

    Figure  7.  FEM model

    图  8  不同角度下界面动摩擦性能

    Figure  8.  Interface dynamic friction properties at different angles.

    图  9  有限元计算结果

    Figure  9.  Result of FEM

    图  10  界面参数影响

    Figure  10.  Effect of interface parameters

    图  11  局部剪切力的影响

    Figure  11.  Effect of local shear force.

    图  12  界面厚度对位移和应变的影响

    Figure  12.  Influence of interface thickness effect of interface thickness on displacement and strain

    图  13  界面层上下的应力传递

    Figure  13.  Stress transfer above and below the interface layer.

    表  1  岩石材料参数

    Table  1.   Rock material parameters

    ρ/(kg·m−3 E/GPa ν λ/GPa μ/GPa ${E/{E_{{\text{tm}}}^{\text{p}}}}$ ${E / {E_{{\text{te}}}^{\text{p}}}}$
    2600 30 0.23 10.4 12.2 50 2
    下载: 导出CSV
  • [1] SCHOLZ C H. Wear and gouge formation in brittle faulting [J]. Geology, 1987, 15(6): 493–495. DOI: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2.
    [2] SCHOLZ C H. Earthquakes and friction laws [J]. Nature, 1998, 391(6662): 37–42. DOI: 10.1038/34097.
    [3] COWIE P A, SCHOLZ C H. Growth of faults by accumulation of seismic slip [J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B7): 11085–11095. DOI: 10.1029/92jb00586.
    [4] BEELER N M, TULLIS T E, WEEKS J D. The roles of time and displacement in the evolution effect in rock friction [J]. Geophysical Research Letters, 1994, 21(18): 1987–1990. DOI: 10.1029/94GL01599.
    [5] 徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
    [6] 单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究 [J]. 实验力学, 2020, 35(1): 41–57. DOI: 10.7520/1001-4888-19-121.

    SHAN J F, XU S L, ZHANG L, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Journal of Experimental Mechanics, 2020, 35(1): 41–57. DOI: 10.7520/1001-4888-19-121.
    [7] 徐松林, 郑文, 刘永贵, 等. 冲击下花岗岩界面动态摩擦特性实验研究 [J]. 高压物理学报, 2011, 25(3): 207–212. DOI: 10.11858/gywlxb.2011.03.003.

    XU S L, ZHENG W, LIU Y G, et al. Experimental investigation on interface dynamic friction of granite under combined pressure and shear impact loading [J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 207–212. DOI: 10.11858/gywlxb.2011.03.003.
    [8] DI TORO G, PENNACCHIONI G. Superheated friction-induced melts in zoned pseudotachylytes within the Adamello tonalites (Italian Southern Alps) [J]. Journal of Structural Geology, 2004, 26(10): 1783–1801. DOI: 10.1016/j.jsg.2004.03.001.
    [9] RICE J R. Heating and weakening of faults during earthquake slip [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): 311–340. DOI: 10.1029/2005JB004006.
    [10] 张磊, 徐松林, 施春英. 应用杆束系统研究水泥砂浆节理面的压剪动特性 [J]. 实验力学, 2016, 31(2): 175–185. DOI: 10.7520/1001-4888-15-220.

    ZHANG L, XU S L, SHI C Y. On the dynamic compression-shear characteristics of cement mortar joint surface based on a bunched bar system [J]. Journal of Experimental Mechanics, 2016, 31(2): 175–185. DOI: 10.7520/1001-4888-15-220.
    [11] 张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化 [J]. 高压物理学报, 2021, 35(3): 031201. DOI: 10.11858/gywlxb.20200640.

    ZHANG L, WANG W S, MIAO C H, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. DOI: 10.11858/gywlxb.20200640.
    [12] ZHOU L J, XU S L, SHAN J F, et al. Heterogeneity in deformation of granite under dynamic combined compression/shear loading [J]. Mechanics of Materials, 2018, 123: 1–18. DOI: 10.1016/j.mechmat.2018.04.013.
    [13] OKADA M, LIOU N S, PRAKASH V, et al. Tribology of high-speed metal-on-metal sliding at near-melt and fully-melt interfacial temperatures [J]. Wear, 2001, 249(8): 672–686. DOI: 10.1016/S0043-1648(01)00698-6.
    [14] BEN-DAVID O, RUBINSTEIN S M, FINEBERG J. Slip-stick and the evolution of frictional strength [J]. Nature, 2010, 463(7277): 76–79. DOI: 10.1038/nature08676.
    [15] BEN-DAVID O, FINEBERG J. Static friction coefficient is not a material constant [J]. Physical Review Letters, 2011, 106(25): 254301. DOI: 10.1103/PhysRevLett.106.254301.
    [16] DI TORO G, HAN R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494–498. DOI: 10.1038/nature09838.
    [17] RUBINO V, ROSAKIS A J, LAPUSTA N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes [J]. Nature Communications, 2017, 8: 15991. DOI: 10.1038/ncomms15991.
    [18] PASSELÈGUE F X, SCHUBNEL A, NIELSEN S, et al. From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks [J]. Science, 2013, 340(6137): 1208–1211. DOI: 10.1126/science.1235637.
    [19] RUBINSTEIN S M, COHEN G, FINEBERG J. Detachment fronts and the onset of dynamic friction [J]. Nature, 2004, 430(7003): 1005–1009. DOI: 10.1038/nature02830.
    [20] RUBINSTEIN S M, COHEN G, FINEBERG J. Dynamics of precursors to frictional sliding [J]. Physical Review Letters, 2007, 98(22): 226103. DOI: 10.1103/PhysRevLett.98.226103.
    [21] GEOBEL T H W, SCHORLEMMER D, BECKER T W, et al. Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments [J]. Geophysical Research Letters, 2013, 40(10): 2049–2054. DOI: 10.1002/grl.50507.
    [22] JOHNSON P A, FERDOWSI B, KAPROTH B M, et al. Acoustic emission and microslip precursors to stick-slip failure in sheared granular material [J]. Geophysical Research Letters, 2013, 40(21): 5627–5631. DOI: 10.1002/2013GL057848.
    [23] MENDES R S, MALACARNE L C, SANTOS R P B, et al. Earthquake-like patterns of acoustic emission in crumpled plastic sheets [J]. Europhysics Letters, 2010, 92(2): 29001. DOI: 10.1209/0295-5075/92/29001.
    [24] HUANG J Y, XU S L, HU S S. Numerical investigations of the dynamic shear behavior of rough rock joints [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1727–1743. DOI: 10.1007/s00603-013-0502-8.
    [25] GAO K, GUYER R, ROUGIER E, et al. From stress chains to acoustic emission [J]. Physical Review Letters, 2019, 123(5): 048003. DOI: 10.1103/PhysRevLett.123.048003.
    [26] 徐松林, 吴文. 岩土材料局部化变形分岔分析 [J]. 岩石力学与工程学报, 2004, 23(20): 3430–3438. DOI: 10.3321/j.issn:1000-6915.2004.20.007.

    XU S L, WU W. Bifurcation analysis on deformation localization of geomaterial [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3430–3438. DOI: 10.3321/j.issn:1000-6915.2004.20.007.
    [27] 钱伟长. 非线性力学的新进展-稳定性、分叉、灾变、浑沌 [M]. 武汉: 华中理工大学出版社, 1988.

    QIAN W C. New progress in nonlinear mechanics stability, bifurcation, catastrophe and chaos [M]. Wuhan: Huazhong University of Technology Press, 1988.
    [28] OTTOSEN N S, RUNESSON K. Properties of discontinuous bifurcation solutions in elasto-plasticity [J]. International Journal of Solids and Structures, 1991, 27(4): 401–421. DOI: 10.1016/0020-7683(91)90131-X.
    [29] FLECK N A, HUTCHINSON J W. A phenomenological theory for strain gradient effects in plasticity [J]. Journal of the Mechanics and Physics of Solids, 1993, 41(12): 1825–1857. DOI: 10.1016/0022-5096(93)90072-N.
    [30] HILL R, HUTCHINSON J W. Bifurcation phenomena in the plane tension test [J]. Journal of the Mechanics and Physics of Solids, 1975, 23(4/5): 239–264. DOI: 10.1016/0022-5096(75)90027-7.
    [31] RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials [J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371–394. DOI: 10.1016/0022-5096(75)90001-0.
    [32] YOUNG N J B. Bifurcation phenomena in the plane compression test [J]. Journal of the Mechanics and Physics of Solids, 1976, 24(1): 77–91. DOI: 10.1016/0022-5096(76)90019-3.
    [33] CHAU K T. Non-normality and bifurcation in a compressible pressure-sensitive circular cylinder under axisymmetric tesion and compression [J]. International Journal of Solids and Structures, 1992, 29(7): 801–824. DOI: 10.1016/0020-7683(92)90017-N.
    [34] 徐松林, 吴文, 李廷, 等. 三轴压缩大理岩局部化变形的试验研究及其分岔行为 [J]. 岩土工程学报, 2001, 23(3): 296–301. DOI: 10.3321/j.issn:1000-4548.2001.03.008.

    XU S L, WU W, LI T, et al. Experimental studies on localization and bifurcation behaviors of a marble under triaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 296–301. DOI: 10.3321/j.issn:1000-4548.2001.03.008.
    [35] 徐松林, 吴文, 张华, 等. 直剪条件下大理岩局部化变形研究 [J]. 岩石力学与工程学报, 2002, 21(6): 766–771. DOI: 10.3321/j.issn:1000-6915.2002.06.002.

    XU S L, WU W, ZHANG H, et al. Testing study on localization of marble under direct shear [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 766–771. DOI: 10.3321/j.issn:1000-6915.2002.06.002.
    [36] 徐松林, 吴文, 张奇华, 等. 大理岩有限变形分岔分析 [J]. 岩土工程学报, 2002, 24(1): 42–46. DOI: 10.3321/j.issn:1000-4548.2002.01.009.

    XU S L, WU W, ZHANG Q H, et al. Bifurcation analyses of finite/large deformation for a marble [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 42–46. DOI: 10.3321/j.issn:1000-4548.2002.01.009.
    [37] IKEDA K, MUROTA K. Imperfect bifurcation in structures and materials [M]. 3rd ed. Cham: Springer, 2019: 201–291. DOI: 10.1007/978-3-030-21473-9.
    [38] IKEDA K, MURAKAMI S, SAIKI I, et al. Image simulation of uniform materials subjected to recursive bifurcation [J]. International Journal of Engineering Science, 2001, 39(17): 1963–1999. DOI: 10.1016/s0020-7225(01)00038-6.
    [39] LEE D, TRIANTAFYLLIDIS N, BARBER J R, et al. Surface instability of an elastic half space with material properties varying with depth [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 858–868. DOI: 10.1016/j.jmps.2007.06.010.
    [40] 李国琛, 耶纳 M. 塑性大应变微结构力学 [M]. 北京: 科学出版社, 1993: 165–282.

    LI G C, JENNA M. Plastic large strain microstructure mechanics [M]. Beijing: Science Press, 1993: 165–282.
    [41] MILES J P, NUWAYHID U A. Bifurcation in compressible elastic/plastic cylinders under uniaxial tension [J]. Applied Scientific Research, 1985, 42(1): 33–54. DOI: 10.1007/BF00382529.
    [42] CHAU K T. Antisymmetric bifurcations in a compressible pressure-sensitive circular cylinder under axisymmetric tension and compression [J]. Journal of Applied Mechanics, 1993, 60(2): 282–289. DOI: 10.1115/1.2900791.
    [43] KIM S M, AL-RUB R K A. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research, 2011, 41(3): 339–358. DOI: 10.1016/j.cemconres.2010.12.002.
    [44] 袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.

    YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
    [45] CHEN M D, XU S L, YUAN L Z, et al. Influence of stress state on dynamic behaviors of concrete under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2023, 253: 108399. DOI: 10.1016/j.ijmecsci.2023.108399.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  10
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 修回日期:  2024-03-06
  • 网络出版日期:  2024-03-26

目录

    /

    返回文章
    返回