Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb
-
摘要: 目前正在研制的超高速动能武器对地打击速度达(5~15)马赫左右, 具有侵彻机理独特, 毁伤效应倍增的特点, 现有理论难以准确描述。本文系统总结了侵爆近区岩石介质的动态可压缩性行为, 发现(5~15)马赫超高速弹侵彻近区岩石介质介于流体和固体弹塑性之间的内摩擦侧限压力状态, 创新提出流体弹塑性内摩擦侵彻理论模型, 填补了低应力弹塑区到高应力流体区之间的应力状态表征空区, 首次获得随弹体侵速变化的弹靶相互作用全过程阻抗演变公式, 界定了钻地弹固体侵彻、拟流体侵彻和流体侵彻的最小动能阈值, 系统提出了超高速动能弹打击侵深、成坑及地冲击安全厚度的计算方法。通过弹体侵速1 100~4 200 m/s的(超)高速侵彻实验, 验证了理论计算公式的准确性。Abstract: The hypervelocity kinetic energy weapon that strikes the ground at the speed from 5 Mach to 15 Mach has some unique characteristics of penetration mechanism and damage effects, which cannot be accurately described by ths existing theories.In this paper, the dynamic compressibility behavior of rock, penetration and explosion effects in the near zone is systematically summarized.It is found that the actual stress in the rock impacted under velocity of 5 Mach to 15 Mach is between fluid state and elasto-plasticity state.A theoretical model of hydro-elastoplastic-frictional penetration model is proposed, which fills the gap of stress state between elastic-plastic state and hydro-dynamic state.For the first time, the impedance formula is obtained, which can describe the stress state of whole interaction process between target and projectile.The minimum kinetic energy threshold of solid penetration, pseudofluid penetration and fluid penetration is defined.The methods for calculating hypervelocity impact effects including penetration depth, crater radius and the safety thickness of protective layer are proposed in the paper.In addition, the accuracy of the theoretical formula is verified by a series of penetration tests with the impact speed from 1 100 m/s to 4 200 m/s.
-
岩石类型 花岗岩 片麻-花岗岩 石英岩 板岩 石灰岩 砂岩 τp/GPa 0.97~1.19 0.68 0.61 0.48~0.57 0.87~1.02 0.90 表 2 第一阶段实验测试结果
Table 2. Test results of the first phase
序号 发射速度/(m/s) 发射速度Ma 侵彻深度h/L 弹体残余质量m/mj 1 1 196 0.798 2.200 0.975 2 1 426 0.951 2.704 0.968 3 1 430 0.953 2.885 0.965 4 1 600 1.067 3.035 0.950 5 1 654 1.103 2.481 0.950 6 1 752 1.168 1.619 0.313 7 1 789 1.193 1.539 0.288 8 1 808 1.205 1.730 0.316 表 3 第二阶段实验综合量测结果
Table 3. Test results of the second phase
序号 发射速度/(m/s) 发射速度Ma 侵彻深度h/L 靶体表面破碎区直径Rc/d0 1 1 829.4 1.220 0.806 25.69 2 2 231.0 1.487 1.250 38.19 3 2 600.3 1.734 0.861 36.81 4 2 806.9 1.871 1.444 39.58 5 2 878.2 1.919 1.667 46.53 6 3 199.6 2.133 1.611 53.82 7 3 542.1 2.361 1.722 65.28 8 4 135.6 2.757 1.806 78.47 注:序号3实验结果异常,未列入图13中。 -
[1] 钱七虎, 王明洋.岩土中的冲击爆炸效应[M].北京:国防工业出版社, 2010:1-43. [2] 任辉启.精确制导武器侵彻效应与工程防护[M].北京:科学出版社, 2016:1-25. [3] SHEMYAKIN E I.Physical and mechanical fundamentals of unconventional technologies of solid mineral development[J].Physical Mesomechanics, 2007, 10(1/2):87-93. [4] 哈努卡耶夫.矿岩爆破物理过程[M].刘殿中, 译.北京: 冶金工业出版社, 1980: 63-82. [5] MELSOSH H J.Impact ejection, spallation, and the origin of meteorites[J].Icarus, 1984, 59(2):234-260. doi: 10.1016/0019-1035(84)90026-5 [6] FORRESTAL M J, TZOU D Y.A spherical cavity-expansion penetration model for concrete targets[J].International Journal of Solids and Structures, 1997, 34(31/32):4127-4146. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226220945/ [7] FORRESTAL M J, LUK V K.Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[J].Journal of Applied Mechanics, 1988, 55(2):275-279. doi: 10.1115/1.3173672 [8] VOITISHEK Y V, SLEPYAN L I.Hydrodynamic model of the puncture of a brittle plate[J].Soviet Mining, 1985, 21(3):231-235. doi: 10.1007/BF02500973 [9] SLEPYAN L I.Calculation of the size of the crater formed by a high-speed impact[J].Journal of Mining Science, 1978, 14(5):465-471. doi: 10.1007%2FBF01086757 [10] ROSENBERG Z, MARMOR E, MAYSELESS M.On the hydrodynamic theory of long-rod penetration[J].International Journal of Impact Engineering, 1990, 10(1/2/3/4):483-486. doi: 10.1016-0734-743X(90)90081-6/ [11] 舍米亚金Е И.弹塑性理论的动力学问题[M].戚承志, 译.北京: 科学出版社, 2009: 101-106. [12] SHEMYAKIN E I.Behavior of rocks under dynamic loads[J].Soviet Mining, 1966, 2(1):8-14. doi: 10.1007/BF02497092 [13] ZENG H, BAI H, ZHU T.X-51A scramjet engine flight and demonstration program[J].Missiles & Space Vehicles, 2010, 29(1):57-61. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201001012 [14] 李益翔.美国高超声速飞行器发展历程研究[D].哈尔滨: 哈尔滨工业大学, 2016. [15] 李争, 刘元雪, 胡明, 等."上帝之杖"天基动能武器毁伤效应评估[J].振动与冲击, 2016, 35(18):159-164. http://d.old.wanfangdata.com.cn/Periodical/zdycj201618026LI Zheng, LIU Yuanxue, HU Ming, et al.Damage effect evaluation of God stick space-based kinetic energy weapons[J].Journal of Vibration and Shock, 2016, 35(18):159-164. http://d.old.wanfangdata.com.cn/Periodical/zdycj201618026 [16] ZHOU Y X, XIA K, LI X B, et al.Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J].International Journal of Rock Mechanics & Mining Sciences, 2011, 49(1):105-112. https://www.deepdyve.com/lp/elsevier/suggested-methods-for-determining-the-dynamic-strength-parameters-and-f01d0RBz3P [17] 奥尔连科Л П.爆炸物理学[M].孙承纬, 译.北京: 科学出版社, 2011: 1127-1152. [18] 泽尔道维奇Я Б, 莱依健尔Ю Л.激波和高温流体动力学现象物理学(下册)[M].张树才, 译.北京: 科学出版社, 1985: 234-260. [19] 戚承志, 钱七虎.岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报, 2003, 22(2):177-181. doi: 10.3321/j.issn:1000-6915.2003.02.002QI Chengzhi, QIAN Qihu.Physical mechanism of dependence of material strength on strain rate for rock-like material[J].Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2):177-181. doi: 10.3321/j.issn:1000-6915.2003.02.002 [20] 戚承志, 钱七虎.岩体动力变形与破坏的基本问题[M].北京:科学出版社, 2009. [21] LUNDBORG N.Strength of rock-like materials[J].International Journal of Rock Mechanics and Mining Science, 1968, 5(5):427-454. doi: 10.1016/0148-9062(68)90046-6 [22] ALEKSEEVSKⅡ V P.Penetration of a rod into a target at high velocity[J].Combustion, Explosion, and Shock Waves, 1966, 2(2):99-106. doi: 10.1007-BF00749237/ [23] TATE A.A theory for the deceleration of long rods after impact[J].Journal of the Mechanics and Physics of Solids, 1967(15):387-399. doi: 10.1016-0022-5096(69)90028-3/ [24] TATE A.Long rod penetration models-part I.a flow field model for high speed long rod penetration[J].International Journal of Mechanical Sciences, 1986, 28(8):535-548. doi: 10.1016/0020-7403(86)90051-2 [25] 王明洋, 邱艳宇, 李杰, 等.超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究[J].岩石力学与工程学报, 2018, 37(3):564-572.WANG Mingyang, QIU Yanyu, LI Jie, et al.Theoretical and experimental study on penetration in rock and ground impact effects of long rod projectiles of hyper speed[J].Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3):564-572. [26] 李干, 宋春明, 邱艳宇, 等.超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究[J].岩石力学与工程学报, 2018, 37(1):60-66. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801006.htmLI Gan, SONG Chunming, QIU Yanyu, et al.Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite[J].Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1):60-66. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801006.htm [27] 宋春明, 李干, 王明洋, 等.不同速度段弹体侵彻岩石靶体的理论分析[J].爆炸与冲击, 2018, 38(2):250-257. http://www.bzycj.cn/CN/abstract/abstract9882.shtmlSONG Chunming, LI Gan, WANG Mingyang, et al.Theoretical analysis of projectiles penetrating into rock targets at different velocities[J].Explosion and Shock Waves, 2018, 38(2):250-257. http://www.bzycj.cn/CN/abstract/abstract9882.shtml [28] GUREVICH M I.The theory of jets of an ideal fluid[M].Moscow:Nauka, 1979:536-537. [29] SHISHKIN N I.Seismic efficiency of a contanct explosion and a high-velocity impact[J].Journal of Applied Mechanics and Technical Physics, 2007, 48(2):145-152. doi: 10.1007/s10808-007-0019-6 [30] VOITISHEK Y V, SLEPYAN L I.Hydrodynamic model of the puncture of a brittle plate[J].Soviet Mining, 1985, 21(3):231-235. doi: 10.1007/BF02500973 [31] 邓国强, 杨秀敏.超高速武器对地打击效应数值仿真[J].科技导报, 2015, 33(16):65-71. doi: 10.3981/j.issn.1000-7857.2015.16.010DENG Guoqiang, YANG Xiumin.Numerical simulation of ground impact effects of hypervelocity weapons[J].Science and Technology Herald, 2015, 33(16):65-71. doi: 10.3981/j.issn.1000-7857.2015.16.010 [32] 邓国强, 杨秀敏.超高速武器对地打击效应特点分析[C]//第一届全国超高速碰撞会议论文集.四川绵阳: 中国空气动力研究与发展中心, 2013: 141-144. [33] 邓国强, 杨秀敏.超高速武器流体侵彻与装药浅埋爆炸效应的等效方法[J].防护工程, 2015, 37(6):27-32.DENG Guoqiang, YANG Xiumin.Effect equivalent method between fluid penetration of hyper velocity weapon and shallow detonation of explosive[J].Protective Engineering, 2015, 37(6):27-32. [34] U.S.Army Engineer Waterways Experiment Station.Fundamentals of protective design for conventional weapons: Tm-855-1[R].Vicksburg, Mississippi, 1986. 期刊类型引用(12)
1. 王昊哲,郭进,吴佳晗,张瀚文,张苏. 掺氢比对氢气-甲烷-空气燃爆特性的影响. 工程热物理学报. 2025(02): 669-678 . 百度学术
2. 郑凯,任佳乐,宋晨,贾千航,邢志祥. 泡沫铜对密闭管道内合成气爆炸特性影响的实验研究. 爆炸与冲击. 2024(01): 28-38 . 本站查看
3. 高岳,朱红钧,唐堂,李佳男,陈泉宇,刘文丽. 天然气管道掺氢输送研究现状与分析. 低碳化学与化工. 2024(03): 118-128 . 百度学术
4. 蔡冲冲,苏洋,王燕. 富氢甲烷的爆燃特性与爆炸抑制研究进展. 爆炸与冲击. 2024(07): 14-37 . 本站查看
5. 徐江荣,宋奥,洪佳璇,李允超,刘茂省,张光学. 低碳背景下氢应用现状与前景展望. 能源环境保护. 2023(01): 65-73 . 百度学术
6. 董冰岩,查裕学,邹颖,殷平平. 球形压力容器中甲烷-氢气-空气爆炸过程数值模拟及实验研究. 中国安全生产科学技术. 2023(03): 157-163 . 百度学术
7. 刘晓洋,喻健良,侯玉洁,闫兴清,张振华,吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响. 化工学报. 2023(07): 3139-3148 . 百度学术
8. 刘虎,李权,吕兆文,王昌建,魏臻,孙昊丞. 圆柱形障碍物对2H_2+O_2+nAr预混气体的再起爆实验研究. 高压物理学报. 2023(05): 160-173 . 百度学术
9. 陈晓坤,马赛燕,程方明,罗振敏,杨帅,王琛琛. 半封闭管道内CO_2对掺氢甲烷燃爆特性的影响. 安全与环境学报. 2023(12): 4279-4286 . 百度学术
10. 刘翠伟,裴业斌,韩辉,周慧,张睿,李玉星,朱建鲁,王财林,孔莹莹. 氢能产业链及储运技术研究现状与发展趋势. 油气储运. 2022(05): 498-514 . 百度学术
11. 万小刚,刘伟,方坦,代鸿超,蔡骁,李倩倩,王金华,黄佐华,兰雪影,常雪伦. 甲烷添加对氢气燃爆特性的影响. 力学与实践. 2022(04): 786-793 . 百度学术
12. 唐毅,员亚龙,李开源,陈先锋,袁必和,贺云龙,黄楚原. 球形非金属材料对甲烷掺氢爆炸抑制机理研究. 高压物理学报. 2022(06): 182-189 . 百度学术
其他类型引用(4)
-