Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

预张力纤维织物超高速碰撞热-力学特性分析

徐铧东 于东 王玉林 石景富 刘蕾 宋迪 苗常青

朱磊, 刘洋, 孟锦晖, 李治国, 胡建波, 李国平, 王永刚. 激光选区熔化Ti-6Al-4V合金的动态力学性能及其本构关系[J]. 爆炸与冲击, 2022, 42(9): 091405. doi: 10.11883/bzycj-2021-0227
引用本文: 徐铧东, 于东, 王玉林, 石景富, 刘蕾, 宋迪, 苗常青. 预张力纤维织物超高速碰撞热-力学特性分析[J]. 爆炸与冲击, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307
ZHU Lei, LIU Yang, MENG Jinhui, LI Zhiguo, HU Jianbo, LI Guoping, WANG Yonggang. Dynamic mechanical properties and constitutive relationship of selective laser melted Ti-6Al-4V alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091405. doi: 10.11883/bzycj-2021-0227
Citation: XU Huadong, YU Dong, WANG Yulin, SHI Jingfu, LIU Lei, SONG Di, MIAO Changqing. Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307

预张力纤维织物超高速碰撞热-力学特性分析

doi: 10.11883/bzycj-2021-0307
基金项目: 载人航天预先研究专项(040101);四川省科技计划(省院省校合作项目)(2020YFSY0015)
详细信息
    作者简介:

    徐铧东(1994- ),男,博士研究生,xuhuadong@hit.edu.cn

    通讯作者:

    苗常青(1972- ),男,博士,教授,miaocq@hit.edu.cn

  • 中图分类号: O347; V423

Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact

  • 摘要: 高性能纤维织物承力层承担充气舱的内压载荷,并为充气舱提供空间碎片防护。充气舱内压载荷将导致纤维织物承力层产生预张力,并对纤维织物的空间碎片超高速碰撞特性产生显著影响,从而影响其空间碎片防护性能。为分析预张力对纤维织物超高速碰撞过程中热-力学特性的影响,采用Johnson-Cook强度模型和Mie-Grüneisen状态方程建立了纤维材料热-力耦合材料模型,利用有限元法-光滑粒子流体动力学耦合算法对纤维织物的纱线编织结构进行离散建模,并通过施加张力载荷实现纤维织物靶板的预拉伸,进而建立了预张力纤维织物超高速碰撞数值模型,分析并得到了预张力作用下纤维织物超高速碰撞热-力学特性及空间碎片防护性能。结果表明:在弹丸超高速碰撞下,随着预张力的提高,纤维织物穿孔面积增大,碎片云扩散角减小,弹丸动能吸收率降低,碰撞区域温度降低。预张力的存在显著降低了纤维织物的空间碎片防护性能。
  • 钛合金(Ti-6Al-4V)因具有低密度、高比强度、耐腐蚀以及良好的耐热性和生物相容性等优势,被广泛地应用于航空航天、国防军事、能源等领域[1-2]。但钛合金由于熔点高、难变形、易开裂和难切削,常用的铸造、锻造和机加工制造复杂零件存在工艺流程长、能耗高、易开裂、刀具损耗快等问题,因此加工周期偏长、材料利用率低,这增加了钛合金的应用成本。激光选区熔化(selective laser melting, SLM)作为近十几年来快速发展的增材制造技术,基于零件的数字模型文件,通过控制高能束激光逐层熔化细小金属粉末的方式来使实体成型。由于具有细微光斑、高能量密度等特点,SLM技术可直接制造高性能、复杂结构的致密金属零部件,在航空航天、装备制造等关键领域得到越来越多的应用。尤其当增材制造技术与某些具有特殊性能的材料相结合,能够发挥传统制造技术不具备的优势。但是由于服役环境苛刻,这些增材制造的构件经常会承受高速冲击载荷(如航天中的防御攻击、航空中的飞鸟撞击等)。因此要求该材料在规定的冲击载荷下能保证结构的完整性和连续性,即具有足够的动态承载能力[3]

    材料的承载性能按照载荷的速度分为静态、准静态和动态承载:静态加载的应变率小于10−5 s−1,可不考虑应变率的影响;准静态加载的应变率范围为10−5~10−1 s−1,应变率的影响可忽略不计;应变率大于10−1 s−1为动态加载,其应变率不可忽略[4]。一些学者发现,激光选区熔化的钛合金具有非常明显的应变率敏感性,随着应变率的增加,材料的强度增加,而韧性呈相反的趋势[5]。相比于传统制造工艺,增材制造制备的材料的晶粒更细小,这样的微观组织使得材料在高应变率载荷下具有更高的强度。如Zaretsky等[6]对比了SLM成型和铸造AlSi10Mg合金在高速拉伸工况下的动态力学性能,发现前者的动态屈服强度是铸造态的2倍,而抗拉强度则达到3倍。Baxter等[7]研究了激光直接沉积AlSi10Mg_200C合金在冲击载荷下的力学性能,并基于实验数据拟合了该材料的Johnson-Cook本构关系。由于材料实验所耗费的时间和费用巨大,数值计算方法在现代工程材料和结构的变形及断裂破坏问题上发挥的作用越来越大。而本构模型是材料性能数值计算的核心问题,其参数对计算结果有很大影响,但是目前针对激光选区熔化材料的动态力学性能及其本构关系的研究尚少。

    随着中国航空航天、国防军事等事业发展越来越快,对增材制造钛合金的需求越来越大,因此研究激光选区熔化钛合金的动态力学性能对其在这些领域的应用具有重要意义。本文采用Gleeble热模拟材料试验机和分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置,分别对激光选区熔化钛合金进行准静态和动态压缩实验,研究从准静态载荷到高应变率冲击载荷作用下钛合金的力学性能,并基于Johnson-Cook本构模型建立激光选区熔化钛合金的动态本构关系,同时对钛合金在高温、高应变率下的力学行为进行有限元模拟,以期为扩大激光选区熔化技术及产品的应用提供理论基础。

    采用激光选区熔化工艺制备5mm×5mm的圆柱形试样,材料为Ti-6Al-4V合金粉末,平均粒径为35 μm。加工设备为Dimetal-100H金属3D打印机,优化加工工艺参数,其激光扫描功率为135 kW,扫描速度为1200 mm/s,层厚为30 μm。为了避免粉末在烧结过程中发生氧化,在成型仓内通入高纯度氩气作为保护气体。同时采用交替式扫描策略以减弱SLM工艺带来的各向异性影响。将样品从基板切除后经过500 ℃/1 h的退火处理,消除90%以上的热应力[8]图1所示为扫描策略及试样示意图,最终样品的相对密度超过99.4%。

    图  1  SLM扫描策略及圆柱试样
    Figure  1.  SLM scanning strategy and cylindrical specimens

    对SLM制备的钛合金试样进行微观组织结构表征,图2给出了圆柱试样纵截面的光学金相(optical metallography, OM)图片和扫描电子显微镜(scanning electron microscope, SEM)图片,可以发现:(1) 材料的致密度良好,未观察到明显的缺陷;(2) 钛合金微观组织中存在有明显的竖条熔道状结构,其产生原因可归因于SLM工艺的热循环过程。

    图  2  激光选区熔化钛合金的光学和扫描电子显微镜图片
    Figure  2.  Optical metallography and SEM micrographs of the SLMed titanium alloy

    图3给出了圆柱试样纵截面的电子背散射衍射(electron backscattered diffraction, EBSD)表征、相分布图以及α相极图。在EBSD表征区域可以观察到拉长的初始β晶粒,并且在晶粒中填充有大量的多级针状α'马氏体晶粒,这是因为在SLM制备过程中β相场急速冷却,其内部连续发生βα的非扩散相变过程,导致形成一种过饱和的α固溶体(即α')。同时β相场的高冷却速度也导致了激光选区熔化钛合金在室温下较低的β相占比,因此在图3(b)中并没有发现β相的残留。从图3(a)和图3(c)可以得出,激光选区熔化钛合金材料择优取向的标准度要低于轧制工艺下的标准度,总体表现为随机织构。这些结果也与早期Simonelli[9]和Yang等[10]对激光选区熔化钛合金材料的研究结果相接近,其金属微观结构也存在类似的组织特点。

    图  3  激光选区熔化钛合金的EBSD表征、相图和极图
    Figure  3.  EBSD characterization, phase map and pole figures of the SLMed titanium alloy

    图4为准静态和动态压缩实验原理简图。其中准静态压缩实验在热模拟材料试验机上进行,以0.3 mm/min的恒定速度进行压缩,名义应变率为10−3 s−1。为了研究激光选区熔化钛合金材料的温度效应,在同应变率准静态压缩载荷下进行了25~550 ℃的压缩实验。通过下式计算准静态压缩实验的工程应力(σe)和工程应变(εeσeεe

    图  4  准静态及动态压缩实验原理简图
    Figure  4.  Schematic diagram of quasi-static and dynamic compression experiments
    {σe=F/Asεe=δ/ls
    (1)

    式中:Fδ分别为准静态测试过程中的加载力以及加载位移,Asls分别为试样的初始横截面积和高度。

    高应变率压缩实验采用了自主研发的杆径为14.5mm的分离式霍普金森压杆(SHPB)装置,主要由撞击杆、入射杆和透射杆组成,其长度分别为0.2、1和1 m。测试时,将试样放在入射杆和透射杆之间,并使试样的成型方向与实验的加载方向保持一致。实验中的入射波、反射波和透射波的脉冲信号由固定在入射杆和透射杆上的应变片记录下来,并根据一维弹性波理论计算出工程应力(σe)、工程应变(εe)和工程应变率(˙εe),其表达式为:

    {σe=Ebar(AbarAs)εt(t)˙εe=2C0lsεr(t)εe=t0˙εedt
    (2)

    式中:EbarAbarC0分别为压杆的杨氏模量、截面积和波速,εrεt为反射波和透射波的应变脉冲。

    根据准静态及动态实验的工程应力-应变数据可以得到真实应力(σ)和应变(ε):

    {σ=σe(1εe)ε=ln(1εe
    (3)

    数值方法采用了ABAQUS有限元软件对激光选区熔化钛合金的动态冲击过程进行了仿真模拟,具体细节将在第3节给出。

    在不同实验温度下进行了钛合金试样的准静态压缩实验,其应力-应变曲线如图5所示,从图中可以得出:(1)对于各个温度条件下的准静态实验,钛合金材料的流动应力在塑性变形开始时迅速增加,但在较大应变时增加变慢,表现出典型的应变硬化现象;(2)随着温度的上升,钛合金材料的流动应力逐渐下降,并且伴随着整体应变硬化率(σ/ε)的减小;(3)在500 ℃及更高的实验温度下的塑性变形中,应力值随着应变的增加反而呈下降趋势,表现出明显的应变软化效应。

    图  5  不同温度下准静态压缩的应力(σ)-应变(ε)曲线
    Figure  5.  Quasi-static compressive stress (σ)-strain (ε) curves at different temperatures

    图6给出了钛合金在室温(25 ℃)条件、不同应变率载荷下的应力-应变曲线,实验所得应变率约为300~3500 s−1。由图6可知:(1)在塑性变形阶段,钛合金的流动应力随着应变的增大而逐渐增大,表现出明显的应变硬化效应,最终在压缩的卸载阶段达到应力峰值;(2)随着应变率的增加,钛合金的屈服强度呈现单调递增的趋势,极限抗压强度也从300 s−1时的1502 MPa增加至3500 s−1时的1938 MPa,这说明激光选区熔化TC4钛合金具有明显的应变率强化效应。

    图  6  室温下动态压缩的应力(σ)-应变(ε)曲线
    Figure  6.  Dynamic compressive stress (σ)-strain (ε) curves at room temperature

    图7对比了本文实验和文献[11-15]关于钛合金力学性能的实验中不同应变率下的极限抗压强度,可以发现,在较高应变率时,拟合线的斜率要远大于低应变率时的斜率,说明高应变率压缩载荷下钛合金表现出更强的应变率强化效应。除此之外,还可以观察到高应变率载荷下钛合金样品的塑性要显著优于低应变率下的样品,这种由应变率诱发的塑性增强效应在许多金属材料的动态实验中[16-17]被发现:例如Qin等[18]在研究DP500双相高强度钢的动态拉伸性能中也发现了同样的现象,伴随着塑性的改善,这些金属材料的强度往往也会有一定程度的提高。

    图  7  室温下钛合金的极限抗压强度(σu)-应变率(˙ε)曲线
    Figure  7.  Ultimate compressive strength (σu) -strain rate (˙ε) curve of Ti-6Al-4V alloy at room temperature

    图8为钛合金在2000 s−1压缩载荷、不同温度下的应力-应变曲线,从图8中可以看出,钛合金的流动应力随温度变化的趋势与准静态下类似,但由于实验温度场与高应变率下的温升效应相互耦合作用,有效降低了钛合金材料中的位错密度,进而提升了材料的塑性流动能力,因此钛合金在高温、高应变率载荷下更易产生应变软化的现象。其原因可分析如下:塑性材料的塑性变形机制主要是位错滑移和形变孪晶的相互竞争,由孪晶造成的塑性变形是与温度和应变率密切相关的,温度越高或应变率越高,形变孪晶(钛及钛合金中最常被报道的是{1101}{1012}孪晶)的影响也就越大。在高温条件下,形变孪晶更容易被激活(在有些报道中,准静态加载条件下钛的形变孪晶在400 ℃以上产生,动态加载条件下在200 ℃产生[19]),从而占据主导地位,使得材料发生软化现象。图5中500 ℃以上的准静态应力-应变曲线出现明显的高温应变软化效应也证明了这一点。

    图  8  不同温度下2000 s−1应变率压缩的应力(σ)-应变(ε)曲线
    Figure  8.  Compressive stress (σ)-strain (ε) curves at 2000 s−1 strain rate at different temperatures

    将钛合金圆柱试样在200 ℃、2000 s−1载荷下压缩后的试样回收,从中间合适位置采用线切割切开进行微观组织观察。图9给出了冲击后的纵截面的EBSD表征,图10给出了加载前后的晶粒尺寸对比,由图中可得:(1)在高温、高应变率冲击载荷下,钛合金发生了显著的晶粒细化现象,试样的平均晶粒尺寸从4.10 µm2降低到2.87 µm2;(2)相较于未加载试样,钛合金的初始β柱状晶在冲击载荷下破碎,原先的晶界十分模糊,几乎不可见。

    图  9  冲击后的纵截面的EBSD表征
    Figure  9.  EBSD characterisation of longitudinal sections after impact
    图  10  加载前后的晶粒尺寸
    Figure  10.  Grain sizes before and after loading

    采用Johnson-Cook塑性本构模型[20]构建激光选区熔化Ti-6Al-4V合金的本构关系,该模型引入了应变硬化效应、应变率强化效应和热软化效应,其一般形式如下:

    σ=(A+Bεn)(1+C ln˙ε)(1Tm)
    (4)

    式中:σε分别为流动应力和塑性应变;A为参考环境温度和参考应变率下的初始屈服应力;Bn为应变硬化模量和硬化指数;C为应变率强化参数;m为热软化指数;˙ε为无量纲应变率(˙ε=˙ε/˙ε0),其中˙ε0为参考应变率;T为无量纲温度(T=(TTr)/(TmTr)),其中Tr为环境温度,Tm为材料熔化温度。本文中分别取参考应变率˙ε0=10−3 s−1、环境温度Tr=25 ℃、熔化温度Tm=1668 ℃。参照李建光等[21]关于J-C本构的相关研究进行激光选区熔化钛合金材料本构参数的标定,用于模拟其在动态冲击载荷下的力学行为。

    ˙ε0=10−3 s−1T=Tr时,即在室温准静态载荷下进行压缩实验,此时方程可被解耦为:

    σ=A+Bεn
    (5)

    将式(5)改写为:ln(σA)=lnB+nlnε,代入室温准静态压缩载荷下的应力-应变数据进行线性拟合,最终得到应变硬化参数分别为A=1186 MPa,B=734 MPa,n=0.36。

    热软化参数m仅与材料的温度效应有关,因此m可以通过参考应变率下不同温度的应力-应变数据得到,此时方程简化为:

    σ=(A+Bεn)(1Tm)
    (6)

    经过变换为ln[1σ/(A+Bεn)]=mlnT,易知m为该函数的斜率。由于方程中应变硬化项已经确定,经过线性拟合得到热软化参数m=0.82。

    应变率强化参数C反映了材料的应变率效应,可采用室温下不同应变率的应力-应变数据进行拟合,此时方程为:

    σ=(A+Bεn)(1+Cln˙ε)
    (7)

    显然C即为σ/(A+Bεn)1=C ln˙ε的斜率,代入室温下不同应变率的应力-应变数据后可得应变率强化参数C为0.025。

    将上述模型结果与其他参考文献中Ti-6Al-4V合金的J-C模型参数进行对比,如表1[22-29]所示,可以发现本文拟合激光选区熔化钛合金所得的本构参数与其他增材制造钛合金的参数较接近,但是相较于传统工艺制备的钛合金,本文本构模型拥有更大的A值。而本构参数反映的是材料的力学性能,但从本质上来说,材料的力学性能是由其微观组织结构决定的。对于增材制造钛合金而言,他们往往都具备有多层级α相结构,与合金钢中的板条状马氏体相类似[30],这种结构拥有更高的位错密度,其对于位错的运动以及塑性变形的开始都起到了很强的阻碍作用。除此之外,增材制造钛合金还拥有更小的晶粒尺寸和更高的α相占比,这些组织结构特点共同导致了增材制造钛合金的高强度和低韧性,在J-C本构参数上则表现为更大的A值。

    表  1  其他文献Johnson-Cook本构参数与本文结果对比
    Table  1.  Comparison of the Johnson-Cook constitutive model parameters in references and this article
    文献加工工艺A/MPaB/MPanCm
    [22]铸造8308090.260.012
    [23]锻造997.9653.10.450.01980.7
    [24]轧制9858300.37940.01610.7646
    [25]轧制106010900.8840.01171.1
    [26]轧制110410360.63490.01390.7794
    [27]热挤压782.7498.40.280.0281
    [28]电子束选区熔化1119838.60.47340.019210.6437
    [29]激光选区熔化11008890.32
    本文结果激光选区熔化11867340.360.0250.82
    下载: 导出CSV 
    | 显示表格

    采用商业有限元软件ABAQUS/Explicit模拟激光选区熔化钛合金在不同温度、2000 s−1应变率压缩载荷下的变形过程。如图11所示,有限元模型中简化了撞击杆和吸收杆,由入射杆、透射杆以及试样组成,采用从实验中提取的梯形波进行加载。设置杆的网格单元为C3D8R单元,默认其为弹性体,采用线弹性本构。试样采用C3D8RT单元,单元尺寸为100 μm,塑性参数采用了式(8)给出的Johnson-Cook本构模型。设置杆与试样之间的接触为硬接触,界面之间设置为无摩擦。将塑性功转热系数设置为0.9,并在初始分析步的预定义场中设置不同的温度。其它有限元基本参数在表2中给出。

    图  11  动态冲击有限元仿真模型
    Figure  11.  Dynamic impact finite element simulation model
    表  2  其他有限元模拟参数
    Table  2.  Other finite element simulation parameters
    材料密度/(kg·m−3杨氏模量/GPa泊松比线膨胀系数/℃−1热导率/(W·m−1·℃−1比热/(J·kg−1·℃−1
    Ti-6Al-4V45001140.348.6×10−67.955612
    18Ni78001900.3
    下载: 导出CSV 
    | 显示表格

    图12为2000 s−1应变率载荷、不同温度下所得实验与有限元模拟的应力-应变曲线对比,需要说明的是,本文的有限元模拟并没有考虑损伤。由图12可知实验与模拟的应力-应变曲线有着较好的重合度,进一步验证了激光选区熔化钛合金本构参数的有效性。

    图  12  实验与仿真的应力-应变曲线对比
    Figure  12.  Comparison of stress-strain curves between experiment and simulation

    对激光选区熔化钛合金在不同温度下进行了准静态和动态压缩实验,并基于实验结果拟合Johnson-Cook本构模型,同时对钛合金在高温、高应变率下的力学行为进行了有限元模拟,得出以下结论。

    (1)较之于传统工艺制备的钛合金材料,激光选区熔化钛合金的微观结构组织造成其屈服强度提升,并且表现出明显的应变率强化效应和热软化效应。

    (2)激光选区熔化钛合金圆柱试样在高温、高应变率压缩载荷下会发生晶粒细化现象,初始β柱状晶也在冲击载荷下破碎,试样的断裂形式呈现出典型的剪切破坏模式。

    (3)基于实验结果拟合了激光选区熔化钛合金材料的Johnson-Cook本构参数,能够很好地描述其在压缩载荷加载下的力学性能。

  • 图  1  纱线几何结构

    Figure  1.  Yarn geometry

    图  2  纤维织物单胞模型

    Figure  2.  A unit cell model for fiber fabric

    图  3  纱线截面单元数量

    Figure  3.  The number of the elements in the yarn section

    图  4  弹体和单层纤维织物之间的超高速碰撞数值模型

    Figure  4.  A numerical model for hypervelocity impact between a projectile and a one-layer fabric

    图  5  不同织物单元规模下的弹丸动能变化历程曲线

    Figure  5.  Kinetic energy-time curves of the projectiles with different element numbers in the yarn section

    图  6  纤维织物超高速碰撞数值模型

    Figure  6.  Numerical model for impact between fabric and projectile

    图  7  充气舱

    Figure  7.  An inflatable capsule

    图  8  纤维织物承力层预张力随舱内压的变化曲线

    Figure  8.  Variation of the fabric pre-tension with the pressure in the inflatable capsule

    图  9  预张力不同的纤维织物在弹丸超高速碰撞下的应力云图和穿孔形貌(t=4.5 μs)

    Figure  9.  Stress nephograms and perforation morphologies of fiber fabrics with different pre-tensions under hypervelocity-projectile impact (t=4.5 μs)

    图  10  在弹丸碰撞作用下,不同预张力纤维织物的穿孔面积

    Figure  10.  Perforated areas in the fiber fabrics with different pre-tensions under hypervelocity-projectile impact

    图  11  预张力为500 MPa的纤维织物与弹丸的超高速碰撞过程

    Figure  11.  Hypervelocity impact process between a fiber fabric with the pre-tension of 500 MPa and a projectile

    图  12  碎片云扩散角

    Figure  12.  Debris cloud expansion angle

    图  13  碎片云扩散角随预张力变化曲线

    Figure  13.  Debris cloud expansion anglesunder different pre-tensions

    图  14  不同预张力状态下织物的弹丸动能吸收率

    Figure  14.  Projectile kinetic energy absorption ratios by fiber fabrics with different pretensions

    图  15  织物穿孔区温度分布

    Figure  15.  Temperature distribution in the fabric perforation zone

    图  16  温度表征点

    Figure  16.  Temperature characterization elements

    图  17  不同表征点的温度随时间的变化曲线

    Figure  17.  Variation of the temperatures with time at different characterization points

    图  18  不同表征点的最高温度随其与碰撞中点距离的变化曲线

    Figure  18.  Variation of the maximum temperatures at different characterization points with their distances from the impact center

    图  19  不同预张力下表征点Ele-1的最高温度变化曲线

    Figure  19.  Variation of the maximum temperature at characterization point Ele-1 with pre-tension.

    表  1  不同应变率下Kevlar 纤维束拉伸强度[19]

    Table  1.   Tensile strength of Kevlar fiber bundle at different strain rates[19]

    ˙ε/s−1σ/GPa ˙ε/s−1σ/GPa
    0.0012.34 1402.94
    0.012.47 4403.02
    13503.08
    下载: 导出CSV

    表  2  Johnson-Cook材料模型参数[19-21]

    Table  2.   Material parameters of the Johnson-Cook model[19-21]

    材料G/MPaA/MPaB/MPanCmTr/KTm/Kcp/(J·kg−1·K−1)
    2024 铝合金274753696840.730.00831.7273775875
    芳纶纤维25740234060.7910.006231273700142
    下载: 导出CSV

    表  3  Mie-Grüneisen状态方程参数[19-21]

    Table  3.   Parameters of the Mie-Grüneisen equation of state[19-21]

    材料Γρ/(g·cm−3)C0/(m·s−1)S1
    2024铝合金2.02.785 3281.338
    芳纶纤维0.769 21.455 3711.0
    下载: 导出CSV
  • [1] BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046.
    [2] CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(1): 125–136. DOI: 10.1016/S0734-743X(99)00068-8.
    [3] SEEDHOUSE E. Bigelow aerospace: colonizing space one module at a time [M]. Cham, Switzerland: Springer, 2015: 26−39. DOI: 10.1007/978-3-319-05197-0.
    [4] 苗常青, 徐铧东, 靳广焓, 等. 纤维编织材料超高速撞击特性实验研究 [J]. 高压物理学报, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.

    MIAO C Q, XU H D, JIN G H, et al. Experimental study of hypervelocity impact characteristics for fiber fabric materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.
    [5] KIM Y, CHOI C, KUMAR S K S, et al. Hypervelocity impact on flexible curable composites and pure fabric layer bumpers for inflatable space structures [J]. Composite Structures, 2017, 176: 1061–1072. DOI: 10.1016/j.compstruct.2017.06.035.
    [6] TANAKA M, MORITAKA Y, AKAHOSHI Y, et al. Development of a lightweight space debris shield using high strength fibers [J]. International Journal of Impact Engineering, 2001, 26(1): 761–772. DOI: 10.1016/S0734-743X(01)00127-0.
    [7] 苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究 [J]. 载人航天, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.

    MIAO C Q, DU M J, HUANG L, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure [J]. Manned Spaceflight, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.
    [8] RUDOLPH M, SCHÄFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics [J]. Acta Astronautica, 2012, 76: 42–50. DOI: 10.1016/j.actaastro.2012.02.002.
    [9] FAHRENTHOLD E P. Computational design of metal-fabric orbital debris shielding [J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1060–1067. DOI: 10.2514/1.A33736.
    [10] 赵士操, 宋振飞, 赵晓平, 等. 基于SPH方法的纤维材料超高速碰撞模拟 [J]. 爆炸与冲击, 2013, 33(S1): 8–15.

    ZHAO S C, SONG Z F, ZHAO X P, et al. Simulation of fiber composites under HVI based on SPH [J]. Explosion and Shock Waves, 2013, 33(S1): 8–15.
    [11] ZHAO S C, SONG Z F, ESPINOSA H D. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics [J]. International Journal of Impact Engineering, 2020, 144: 103586. DOI: 10.1016/j.ijimpeng.2020.103586.
    [12] 管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究 [J]. 机械工程学报, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.

    GUAN G S, PU D D, HA Y, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature [J]. Journal of Mechanical Engineering, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.
    [13] CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008.
    [14] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [15] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [16] RICE M H, MCQUEEN R G, WALSH J M. Compression of solids by strong shock waves [J]. Solid State Physics, 1958, 6: 1–63. DOI: 10.1016/S0081-1947(08)60724-9.
    [17] HEBERLING T, TERRONES G, WESELOH W. Hydrocode simulations of a hypervelocity impact experiment over a range of velocities [J]. International Journal of Impact Engineering, 2018, 122: 1–9. DOI: 10.1016/j.ijimpeng.2018.07.019.
    [18] WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251–1257. DOI: 10.1016/S1359-835X(99)00035-4.
    [19] WANG Y, XIA Y M. The effects of strain rate on the mechanical behaviour of Kevlar fibre bundles: an experimental and theoretical study [J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(11): 1411–1415. DOI: 10.1016/S1359-835X(98)00038-4.
    [20] SHIMEK M E, FAHRENTHOLD E P. Impact dynamics simulation for multilayer fabrics of various weaves [J]. AIAA Journal, 2015, 53(7): 1793–1811. DOI: 10.2514/1.J053504.
    [21] BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449−1458. DOI: 10.1016/j.ijimpeng.2008.07.057.
    [22] JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2003, 28(9): 947–966. DOI: 10.1016/S0734-743X(03)00012-5.
    [23] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
    [24] 张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.

    ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics [J]. Explosion and Shock Waves, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.
    [25] HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
    [26] 徐铧东, 王玉林, 刘蕾, 等. 纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性 [J]. 复合材料学报, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.

    XU H D, WANG Y L, LIU L, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.
    [27] GIANNAROS E, KOTZAKOLIOS A, SOTIRIADIS G, et al. On fabric materials response subjected to ballistic impact using meso-scale modeling: numerical simulation and experimental validation [J]. Composite Structures, 2018, 204: 745–754. DOI: 10.1016/j.compstruct.2018.07.090.
    [28] 韩雅菲, 唐恩凌, 郭凯, 等. 超高速碰撞2A12铝板产生的热辐射演化特征实验研究 [J]. 发光学报, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.

    HAN Y F, TANG E L, GUO K, et al. Experimental research on evolutionary characteristics of thermal radiation generated by hypervelocity impacting on 2A12 aluminum plate [J]. Chinese Journal of Luminescence, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.
    [29] HAN Y F, TANG E L, HE L P, et al. Evolutionary characteristics of thermal radiation induced by 2A12 aluminum plate under hypervelocity impact loading [J]. International Journal of Impact Engineering, 2019, 125: 173–179. DOI: 10.1016/j.ijimpeng.2018.11.013.
  • 期刊类型引用(7)

    1. 李祥辉,张兴渝,胡家豪,刘洋,马伯翰,王永刚,蒋招绣. AISI 4340钢靶大塑性模型及断裂起始模型参数研究. 兵工学报. 2025(01): 301-316 . 百度学术
    2. 甘志鹏,涂灿,陈剑斌,谢超,王永刚,汪小锋. 退火态增材制造AZ91D镁合金在极端条件下的力学行为. 中国有色金属学报. 2024(04): 1268-1284 . 百度学术
    3. 刘涛,史正宏,雷经发,王璐,柏威. TC4钛合金在不同固溶温度下的微观结构及动态力学行为. 材料热处理学报. 2024(12): 100-109 . 百度学术
    4. 王丰,刘蒙,李国和,王大春,闫冬,范建勋. 金属增减材制造本构模型获取方法研究进展. 表面技术. 2023(03): 52-63 . 百度学术
    5. 史京帅,李忠华,刘斌,蒯泽宙,李霍东,陈彦磊,温海骏. 基于选区激光熔化的钛合金薄壁结构等刚度设计及性能研究. 应用激光. 2023(04): 1-8 . 百度学术
    6. 朱磊,杨勇,张继元,范树迁,魏文猴. N_2对增材制造钛基复合材料组织和性能的影响. 工程科学学报. 2023(09): 1509-1516 . 百度学术
    7. 刘涛,邵博,雷经发,王璐,孙虹. 固溶温度对TC4钛合金微观组织和动态拉伸力学性能的影响. 稀有金属材料与工程. 2023(12): 4133-4140 . 百度学术

    其他类型引用(2)

  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  253
  • PDF下载量:  62
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2021-11-01
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-05-27

目录

/

返回文章
返回