Application of colorimetric pyrometer in the measurement of transient explosion temperature
-
摘要: 为了研究瞬态爆炸温度场分布规律,基于高速相机、黑体辐射理论、图像传感器的拜尔阵列和自编python代码,构建了依据比色测温原理的高速二维温度测试系统,并对添加不同含量TiH2的乳化炸药、TiH2粉尘以及C2H2气体的爆炸温度场进行了测量。实验结果表明:TiH2的加入可以显著提高炸药的爆炸温度和火球持续时间,当乳化炸药中的TiH2质量分数为6%时,爆炸平均温度最大值为3048 K,相比纯乳化炸药提高了41.5%;此外,TiH2粉尘云火焰平均温度呈现先增大,再稳定,最后减小的趋势,浓度为500 g/m3的粉尘云火焰平均温度高于浓度为833 g/m3的平均温度,其最高平均温度分别为2231 和 2192 K;10%C2H2/90%空气预混气体(即体积分数为10%的C2H2和90%空气组成)的早期火焰温度均匀,内部略低于边缘温度,随着火焰膨胀,火焰边缘温度逐渐升高,火焰平均温度开始降低。与传统爆炸测温手段相比,比色测温方法可以准确测量某区域的瞬态爆炸温度,获得温度分布云图,为研究瞬态爆轰温度规律及影响因素提供了一种新的技术手段。Abstract: To study the distribution law of transient explosion temperature field, a high-speed two-dimensional temperature measuring system according to the colorimetric temperature measurement principle was constructed using a high-speed camera, the gray-body radiation principle, Bayer array of the image sensor, and a self-compiled python code. The relationship between the gray value of high-speed camera image and explosion temperature was deduced. And the Bayer filter of the image sensor was used to obtain the intensity information of red, green, and blue light on each pixel, which was calculated through Python code with the edge adaptive interpolation algorithm. A tungsten filament lamp was selected as the temperature source for calibration. The explosion temperature fields of emulsion explosives with different TiH2 powder contents, TiH2 dust, and C2H2 gas were measured by the system. The experimental results show that the addition of TiH2 powders could significantly increase the explosion temperature and fireball duration of emulsion explosives. When the mass content of TiH2 powders in emulsion explosive is 6%, the maximum average temperature of the explosion is 3048 K, a 41.5% increase than that of pure emulsion explosive. In addition, the average flame temperature of the TiH2 dust cloud increases first, then stabilizes, and finally decreases. The mean flame temperature of the 500 g/m3 dust is higher than that of 833 g/m3 dust, with the corresponding maximum mean temperatures of 2231 and 2192 K, respectively. The early flame temperature distribution of the premixed 10% C2H2/90% air was uniform, with the internal temperature slightly lower than the edge temperature. As the flame expands, the flame edge temperature gradually increases, while the average flame temperature begins to decrease, and the maximum average temperature is 2523 K. Compared with the traditional explosion temperature measurement method, the colorimetric pyrometer method can accurately measure the transient explosion temperature in a certain region and obtain the temperature distribution cloud map, which provided a new technical means for studying transient detonation temperature and its influencing factors.
-
表 1 乳化基质的质量分数
Table 1. Mass fraction of emulsion matrix
NH4NO3 NaNO3 C18H38 C12H26 C24H44O6 H2O 0.75 0.10 0.04 0.01 0.02 0.08 表 2 乳化炸药样品的组成
Table 2. Composition of emulsion explosive samples
样品 质量分数/% 乳化基质 GMs TiH2 A 96 4 0 B 90 4 6 -
[1] KAMLET M J, JACOBS S J. Chemistry of detonations: I: a simple method for calculating detonation properties of C-H-N-O explosives [J]. The Journal of Chemical Physics, 1968, 48(1): 23–35. DOI: 10.1063/1.1667908. [2] BASSETT W P, DLOTT D D. High dynamic range emission measurements of shocked energetic materials: octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) [J]. Journal of Applied Physics, 2016, 119(22): 225103. DOI: 10.1063/1.4953353. [3] FROST D L, CLEMENSON J M, GOROSHIN S, et al. Thermocouple temperature measurements in metalized explosive fireballs [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(6): 899–911. DOI: 10.1002/prep.202000328. [4] LEBEL L S, BROUSSEAU P, ERHARDT L, et al. Measurements of the temperature inside an explosive fireball [J]. Journal of Applied Mechanics, 2013, 80(3): 031702. DOI: 10.1115/1.4023561. [5] LEWIS W K, RUMCHIK C G. Measurement of apparent temperature in post-detonation fireballs using atomic emission spectroscopy [J]. Journal of Applied Physics, 2009, 105(5): 056104. DOI: 10.1063/1.3089251. [6] ADUEV B P, NURMUKHAMETOV D R, LISKOV I Y, et al. Measuring the temperature of PETN explosion products with iron inclusions [J]. Combustion, Explosion, and Shock Waves, 2017, 53(3): 349–352. DOI: 10.1134/S0010508217030133. [7] OLOKUN A, LI B, PRAKASH C, et al. Examination of local microscale-microsecond temperature rise in HMX-HTPB energetic material under impact loading [J]. JOM, 2019, 71(10): 3531–3535. DOI: 10.1007/s11837-019-03709-z. [8] WANG L Y, DU H M, XU H. Compensation method for infrared temperature measurement of explosive fireball [J]. Thermochimica Acta, 2019, 680: 178342. DOI: 10.1016/j.tca.2019.178342. [9] GOROSHIN S, FROST D L, LEVINE J, et al. Optical pyrometry of fireballs of metalized explosives [J]. Propellants, Explosives, Pyrotechnics, 2006, 31(3): 169–181. DOI: 10.1002/prep.200600024. [10] DENSMORE J M, HOMAN B E, BISS M M, et al. High-speed two-camera imaging pyrometer for mapping fireball temperatures [J]. Applied Optics, 2011, 50(33): 6267–6271. DOI: 10.1364/AO.50.006267. [11] CHANG P J, MOGI T, DOBASHI R. An investigation on the dust explosion of micron and nano scale aluminium particles [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104437. DOI: 10.1016/j.jlp.2021.104437. [12] KEYVAN S, ROSSOW R, ROMERO C. Blackbody-based calibration for temperature calculations in the visible and near-IR spectral ranges using a spectrometer [J]. Fuel, 2006, 85(5/6): 796–802. DOI: 10.1016/j.fuel.2005.08.033. [13] ADAMS JR J E, HAMILTON JR J F. Adaptive color plane interpolation in single sensor color electronic camera: US5652621A [P]. 1997-07-29. [14] CHENG Y F, YAO Y L, WANG Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion [J]. International Journal of Hydrogen Energy, 2021, 46(69): 34463–34468. DOI: 10.1016/j.ijhydene.2021.07.224. [15] YAO Y L, CHENG Y F, ZHANG Q W, et al. Explosion temperature mapping of emulsion explosives containing TiH2 powders with the two-color pyrometer technique [J/OL]. Defence Technology, (2021-10-12)[2021-11-15]. https://doi.org/ 10.1016/j.dt.2021.09.020. DOI: 10.1016/j.dt.2021.09.020. [16] CHENG Y F, MA H H, SHEN Z W. Detonation characteristics of emulsion explosives sensitized by MgH2 [J]. Combustion, Explosion, and Shock Waves, 2013, 49(5): 614–619. DOI: 10.1134/S0010508213050134. [17] 程扬帆, 方华, 刘文近, 等. 乳化炸药中空功能微囊的制备方法及性能表征 [J]. 含能材料, 2019, 27(9): 792–800. DOI: 10.11943/CJEM2019039.CHENG Y F, FANG H, LIU W J, et al. Preparation and application of functional hollow microcapsules in emulsion explosives [J]. Chinese Journal of Energetic Materials, 2019, 27(9): 792–800. DOI: 10.11943/CJEM2019039. [18] SILVESTROV V V, BORDZILOVSKII S A, KARAKHANOV S M. Detonation temperature measurement of the emulsion explosive [J]. Doklady Physics, 2014, 59(9): 398–400. DOI: 10.1134/S1028335814070131. [19] CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585–591. DOI: 10.1002/prep.201700045. [20] 刘文近, 程扬帆, 陆松来, 等. PVAc弹性微球包覆的高能化学点火具的点火性能 [J]. 含能材料, 2018, 26(6): 530–536. DOI: 10.11943/j.issn.1006-9941.2018.06.011.LIU W J, CHENG Y F, LU S L, et al. Ignition performance of the high energy chemical igniter coated with a PVAc elastic microsphere [J]. Chinese Journal of Energetic Materials, 2018, 26(6): 530–536. DOI: 10.11943/j.issn.1006-9941.2018.06.011. [21] YOUNG G, JIAN G Q, JACOB R, et al. Decomposition and ignition characteristics of titanium hydride at high heating rates [J]. Combustion Science and Technology, 2015, 187(8): 1182–1194. DOI: 10.1080/00102202.2015.1019619. [22] 王文涛, 程扬帆, 姚雨乐, 等. 当量比对乙炔/空气爆炸特性和火焰速度的影响[J]. 中南大学学报(自然科学版), 2022, 53(2): 433−442.WANG W T, CHENG Y F, YAO Y L, et al. Effects of equivalence ratios on explosion characteristics and flame speeds of acetylene/air mixture[J]. Journal of Central South University (Science and Technology), 2022, 53(2): 433−442.DOI: 10.11817/j.issn.1672-7207.2022.02.008 [23] 高志崇. 烃燃烧反应机理探讨 [J]. 辽宁大学学报(自然科学版), 2002, 29(3): 266–271. DOI: 10.3969/j.issn.1000-5846.2002.03.017.GAO Z C. Mechanism of hydrocarbon combustion reaction [J]. Journal of Liaoning University (Natural Sciences Edition), 2002, 29(3): 266–271. DOI: 10.3969/j.issn.1000-5846.2002.03.017. [24] CHINTERSINGH K L, NGUYEN Q, SCHOENITZ M, et al. Combustion of boron particles in products of an air–acetylene flame [J]. Combustion and Flame, 2016, 172: 194–205. DOI: 10.1016/j.combustflame.2016.07.014. 期刊类型引用(18)
1. 田其森,张丕状,赵毅,赵敏,豆鑫. 基于比色测温的爆炸火球内窥式温度测量技术. 化工自动化及仪表. 2025(01): 26-31 . 百度学术
2. 李丹一,程扬帆,李翔,王浩,赵长啸,沈兆武. Al/PTFE/TiH_2三元活性材料与RDX组合装药的爆炸释能特性. 兵工学报. 2025(01): 39-49 . 百度学术
3. 李柯江,梁海坚,李志玲,王高,薛云朝. 基于爆炸场的钨铼热电偶测温方法研究. 计算机测量与控制. 2025(01): 114-120 . 百度学术
4. 赵敏,张丕状,豆鑫,赵毅,田其森. 爆炸火球内部温度测量方法研究. 化工自动化及仪表. 2025(02): 198-204 . 百度学术
5. 赵毅,张丕状,赵敏,田其森,豆鑫. 适用于辐射广谱测温的快速标定系统设计. 化工自动化及仪表. 2025(02): 264-268 . 百度学术
6. 赵吉祥,陈阳,刘光海,王益清,常静. 面向爆炸场的瞬态二维测温系统研究. 光学与光电技术. 2025(02): 25-30 . 百度学术
7. 帅浩然,代云瑜,蒋洪川. 瞬态K型热电偶探针的研制. 测控技术. 2025(04): 42-48 . 百度学术
8. 张蓓蓓,程扬帆,夏煜,钱家祺,韦箫. 弱约束条件下氢气含量对甲烷/空气燃爆特性的影响研究. 振动与冲击. 2024(06): 255-261 . 百度学术
9. 李广馨,王卫国. 比色测温技术在危化品爆炸测试中的应用研究. 广州化工. 2024(17): 181-183 . 百度学术
10. 张蓓蓓,程扬帆,蒋八运,沈兆武,甘小红. 典型金属粉末对FAE冲击波效应和热毁伤性能的影响. 爆炸与冲击. 2024(10): 125-137 . 本站查看
11. 王佳,郝平,冀占慧,高建兵,莫南芳. 含能材料的热学性能表征技术应用进展. 含能材料. 2024(11): 1206-1224 . 百度学术
12. 蒋八运,程扬帆,李世周,钱家祺,韦箫,薛茹君. 环氧丙烷/空气混合物气-液两相燃爆特性. 含能材料. 2023(07): 699-706 . 百度学术
13. 李子涵,程扬帆,王浩,朱守军,沈兆武. 负压环境对乳化炸药爆炸温度场和有害效应的影响. 爆炸与冲击. 2023(08): 30-42 . 本站查看
14. 袁玉红,黄寅生,谭玉明,储召栋,张扬,李军福,夏煜,程扬帆. 弱约束条件下当量比对氢气爆燃特性的影响. 火工品. 2023(05): 63-68 . 百度学术
15. 陶臣,王昕,纪冲,王钰婷,赵长啸,韩泽岩. 近域爆炸瞬态温度场作用下聚脲涂层灼烧损伤特性. 含能材料. 2023(08): 832-843 . 百度学术
16. 黄志成,李新娥,赵夏青. 比色测温法的最优波段及测温精度的研究. 激光与红外. 2023(12): 1871-1876 . 百度学术
17. 王安勇,王良全. 某含铝炸药与TNT爆炸火球几何尺寸对比分析. 国外电子测量技术. 2022(04): 134-138 . 百度学术
18. 杨翠华. 基于PLC机电一体化的湍流试验装置设计. 河南科技. 2022(18): 42-45 . 百度学术
其他类型引用(5)
-