Volume 43 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHANG Jingjing, XIE Yang, LIU Zhifang, MA Xiaomin, LI Shiqiang. Bird impact response and damage of carbon fiber blades[J]. Explosion And Shock Waves, 2023, 43(12): 123301. doi: 10.11883.bzycj-2023-0130
Citation: ZHANG Jingjing, XIE Yang, LIU Zhifang, MA Xiaomin, LI Shiqiang. Bird impact response and damage of carbon fiber blades[J]. Explosion And Shock Waves, 2023, 43(12): 123301. doi: 10.11883.bzycj-2023-0130

Bird impact response and damage of carbon fiber blades

doi: 10.11883.bzycj-2023-0130
  • Received Date: 2023-04-10
  • Rev Recd Date: 2023-06-27
  • Available Online: 2023-08-21
  • Publish Date: 2023-12-12
  • The impact resistance of T300 carbon fiber blades was studied through experiments and numerical simulations. The deformation damage pattern and the effect of the number of fiber layers on the impact resistance of the blade are studied. The impact experiment was conducted on the carbon fiber blades of different layers. Based on the macro-level continuum damage mechanics theory and the Hashin failure criterion, a vectorized user-material subroutine was written for the carbon fiber material, and the smooth particle hydrodynamics algorithm was used to simulate the gelatin projectiles. Numerical simulations of bird impact on the composite blades with different layers were carried out in ABAQUS/Explicit. The blade deformation process, bird flow state, and impact duration time of the experiments agree well with the numerical results. In the initial impact stage, the blade specimens have large deformations, and the deformation modes of the three carbon fiber blades with different layers are similar to each other. However, in the impact attenuation and constant flow stages, the deflection and fracture of different layers of carbon fiber blades are quite different. The damage mode of the 6-layer carbon fiber blade is complete fractures at the blade root and top, the damage mode of the 8-layer carbon fiber blade is root fracture, and there is no obvious macroscopic visible damage in the 10-layer carbon fiber blade. Under the gelatin projectile impact loading, the blade deformation mode is mainly coupled with the bending and torsional deformation process, and the bending deformation dominates the damage and failure process. Experimental results show that the damage pattern of carbon fiber blades is mainly classified as (1) edge damage at the root, (2) complete fracture at the root, and (3) complete fracture at the root and top edge. The impact resistance of carbon fiber is greatly influenced by the number of layers. The mechanism analysis of gelatin projectile impact on carbon fiber blades through experiments and numerical simulations can provide a reference for the engineering design and application of carbon fiber blades.
  • loading
  • [1]
    张海洋, 王相平, 杜少辉, 等. 航空发动机风扇叶片的抗鸟撞设计 [J]. 航空动力学报, 2020, 35(6): 1157–1168. DOI: 10.13224/j.cnki.jasp.2020.06.005.

    ZHANG H Y, WANG X P, DU S H, et al. Design for anti-bird impact of aero-engine fan blade [J]. Journal of Aerospace Power, 2020, 35(6): 1157–1168. DOI: 10.13224/j.cnki.jasp.2020.06.005.
    [2]
    李玉龙, 石霄鹏. 民用飞机鸟撞研究现状 [J]. 航空学报, 2012, 33(2): 189–198.

    LI Y L, SHI X P. Investigation of the present status of research on bird impacting on commercial airplanes [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2): 189–198.
    [3]
    LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird’s substitute tests results and evaluation of available numerical methods [J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276–1287. DOI: 10.1016/j.ijimpeng.2009.03.009.
    [4]
    LIU H B, LIU J, KABOGLU C, et al. The behaviour of fibre-reinforced composites subjected to a soft impact-loading: an experimental and numerical study [J]. Engineering Failure Analysis, 2020, 111: 104448. DOI: 10.1016/j.engfailanal.2020.104448.
    [5]
    MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fanblade [J]. International Journal of Impact Engineering, 2008, 35(6): 487–498. DOI: 10.1016/j.ijimpeng.2007.04.008.
    [6]
    李志强, 韩强, 杨建林, 等. 基于SPH方法的鸟撞飞机风挡的数值模拟 [J]. 华南理工大学学报(自然科学版), 2009, 37(12): 147–151. DOI: 10.3321/j.issn:1000-565X.2009.12.028.

    LI Z Q, HAN Q, YANG J L, et al. SPH-based numerical simulation of aircraft windshield under bird impact [J]. Journal of South China University of Technology (Natural Science Edition), 2009, 37(12): 147–151. DOI: 10.3321/j.issn:1000-565X.2009.12.028.
    [7]
    SHMOTIN Y N, CHUPIN P V, GABOV D V, et al. Bird strike analysis of aircraft engine fan [C]//Proceedings of the 7th European LS-DYNA Conference. DYNAmore GmbH, 2009: 6.
    [8]
    AMOO L M. On the design and structural analysis of jet engine fan blade structures [J]. Progress in Aerospace Sciences, 2013, 60: 1–11. DOI: 10.1016/j.paerosci.2012.08.002.
    [9]
    TAHERI-BEHROOZ F, KASHANI A R S, HEFZABAD R N. Effects of material nonlinearity on load distribution in multi-bolt composite joints [J]. Composite Structures, 2015, 125: 195–201. DOI: 10.1016/j.compstruct.2015.01.047.
    [10]
    LIU L L, SHAO H Y, ZHU X Y, et al. Bird impact response and damage mechanism of 3D orthogonal woven composite aeroengine blades [J]. Composite Structures, 2023, 304: 116311. DOI: 10.1016/j.compstruct.2022.116311.
    [11]
    LIU L L, LUO G, CHEN W, et al. Dynamic behavior and damage mechanism of 3D braided composite fan blade under bird impact [J]. International Journal of Aerospace Engineering, 2018, 2018: 5906078. DOI: 10.1155/2018/5906078.
    [12]
    ZHOU Y D, SUN Y C, CAI W C. Bird-striking damage of rotating laminates using SPH-CDM method [J]. Aerospace Science and Technology, 2019, 84: 265–272. DOI: 10.1016/j.ast.2018.10.009.
    [13]
    于永强, 李成, 铁瑛. 基于SPH方法的鸟撞复合材料层合板数值分析 [J]. 玻璃钢/复合材料, 2017(5): 48–52. DOI: 10.3969/j.issn.1003-0999.2017.05.008.

    YU Y Q, LI C, TIE Y. SPH-based numercial simulation of composite material under bird impact [J]. Composites Science and Engineering, 2017(5): 48–52. DOI: 10.3969/j.issn.1003-0999.2017.05.008.
    [14]
    郝红勋, 李长季. 航空发动机风扇叶片结构损伤识别研究 [J]. 中国民航大学学报, 2009, 27(6): 17–20. DOI: 10.3969/j.issn.1001-5590.2009.06.005.

    HAO H X, LI C J. Research of fan blade of aero-engine damage identification in structures [J]. Journal of Civil Aviation University of China, 2009, 27(6): 17–20. DOI: 10.3969/j.issn.1001-5590.2009.06.005.
    [15]
    梁智洪, 詹超, 张芝芳. 基于频率识别纤维增强树脂复合材料加筋板的分层损伤 [J]. 复合材料学报, 2019, 36(11): 2614–2627. DOI: 10.13801/j.cnki.fhclxb.20190305.004.

    LIANG Z H, ZHAN C, ZHANG Z F. Frequency-based delamination detection in stiffened fiber reinforced polymer composite plates [J]. Acta Materiae Compositae Sinica, 2019, 36(11): 2614–2627. DOI: 10.13801/j.cnki.fhclxb.20190305.004.
    [16]
    HOU J P, RUI Z C. Measurement of the properties of woven CFRP T300/914 at different strain rates [J]. Composites Science and Technology, 2000, 60(15): 2829–2834. DOI: 10.1016/S0266-3538(00)00151-2.
    [17]
    柴象海, 侯亮, 王志强, 等. 航空发动机宽弦风扇叶片鸟撞损伤模型标定 [J]. 航空动力学报, 2016, 31(5): 1032–1038. DOI: 10.13224/j.cnki.jasp.2016.05.002.

    CHAI X H, HOU L, WANG Z Q, et al. Bird strike model calibration for an aero engine wide-chord fan blade [J]. Journal of Aerospace Power, 2016, 31(5): 1032–1038. DOI: 10.13224/j.cnki.jasp.2016.05.002.
    [18]
    TU H, FUNG T C, DEL LINZ P, et al. Projectile impact-induced spalling damage on carbon fiber reinforced polymer strengthened RC plates [J]. Composite Structures, 2023, 319: 117129. DOI: 10.1016/j.compstruct.2023.117129.
    [19]
    HORSLEY J. The Rolls-Royce way of validating fan integrity: AIAA 93-2602 [R]. AIAA, 1993.
    [20]
    谭焕成, 许善迎, 黄雄, 等. 三维四向编织复合材料宏观有限元模型冲击损伤仿真及试验验证 [J]. 复合材料学报, 2018, 35(5): 1139–1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002.

    TAN H C, XU S Y, HUANG X, et al. Macro-scale finite element model for impact damage simulation and experimental verification of three-dimensional four-directional braided composites [J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1139–1148. DOI: 10.13801/j.cnki.fhclxb.20170821.002.
    [21]
    HASHIN Z. Fatigue failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1981, 48(4): 846–852. DOI: 10.1115/1.3157744.
    [22]
    马小敏. 强动载荷下纤维-金属层合板及其增强梯度夹芯结构的力学行为 [D]. 太原: 太原理工大学, 2019.

    MA X M. The mechanical behavior of fiber-metal laminates and the reinforced gradient sandwich panels under intensive loading [D]. Taiyuan: Taiyuan University of Technology, 2019.
    [23]
    SMOJVER I, IVANČEVIĆ D. Bird strike damage analysis in aircraft structures using Abaqus/Explicit and coupled Eulerian Lagrangian approach [J]. Composites Science and Technology, 2011, 71(4): 489–498. DOI: 10.1016/j.compscitech.2010.12.024.
    [24]
    BARBER J P, TAYLOR H R, WILBECK J S. Bird impact forces and pressures on rigid and compliant targets: ADA061313 [R]. Dayton: University of Dayton Research Institute, 1978.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (64) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return