Volume 40 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
HE Qiang, WANG Yonghui, SHI Xiaona, GU Hang, CHEN Yu. Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact[J]. Explosion And Shock Waves, 2020, 40(12): 123101. doi: 10.11883.bzycj/2020-0055
Citation: HE Qiang, WANG Yonghui, SHI Xiaona, GU Hang, CHEN Yu. Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact[J]. Explosion And Shock Waves, 2020, 40(12): 123101. doi: 10.11883.bzycj/2020-0055

Energy absorption of new thin-walled, multi-cellular, tubular structures with Sierpinski hierarchical characteristics under axial impact

doi: 10.11883.bzycj/2020-0055
  • Received Date: 2020-03-03
  • Rev Recd Date: 2020-06-07
  • Publish Date: 2020-12-05
  • In order to improve the energy absorption capacity of thin-walled structures, a new type of thin-walled tube (SHT) with hierarchical characteristic was proposed based on the Sierpinski fractal structure. The deformation mode and energy absorption characteristics of SHTs under axial impact load were simulated using the nonlinear finite element method, and compared with those of ordinary triangular thin-walled tubes. The results show that the deformation mode of the new SHT is an axisymmetric progressive buckling mode. With the introduction of the Sierpinski hierarchical characteristics, the half-folded wavelength of the cell wall bending process is reduced, hence more plastic folding elements are formed and more energy is absorbed. Furthermore, theoretical expressions of the axial compression stress were obtained based on the energy conservation theory and plastic hinge theory. The correctness of the theoretical formula was verified by comparing with the finite element simulation. The results display that under the same relative density, the dynamic compressive stresses of the first-, second- and third-order SHTs are 85.8%, 138.2% and 183.8%, respectively, higher than that of the ordinary triangular thin-walled tubes. The introduction of the Sierpinski hierarchical characteristics into the design of the thin-walled tubes can effectively improve the crashworthiness of the thin-walled tubes, and it can provide a reference for the research and design of new energy absorbers.

  • loading
  • [1]
    MCFARLAND R K. Hexagonal cell structures under post-buckling axial load [J]. AIAA Journal, 1963, 1(6): 1380–1385. DOI: 10.2514/3.1798.
    [2]
    WIERZBICKI T. Crushing analysis of metal honeycombs [J]. International Journal of Impact Engineering, 1983, 1(2): 157–174. DOI: 10.1016/0734-743X(83)90004-0.
    [3]
    WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. DOI: 10.1115/1.3167137.
    [4]
    TRAN T N, HOU S J, HAN X, et al. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes [J]. Thin-Walled Structures, 2014, 82: 183–195. DOI: 10.1016/j.tws.2014.03.019.
    [5]
    尹汉锋, 文桂林. 基于简化基本折叠单元法的蜂窝耐撞性优化设计 [J]. 机械工程学报, 2011, 47(16): 93–100. DOI: 10.3901/JME.2011.16.093.

    YIN H F, WEN G L. Crashworthiness optimization design of honeycombs based on the simplified basic folding element method [J]. Journal of Mechanical Engineering, 2011, 47(16): 93–100. DOI: 10.3901/JME.2011.16.093.
    [6]
    SUN G Y, JIANG H, FANG J G, et al. Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact [J]. Materials and Design, 2016, 110: 705–719. DOI: 10.1016/j.matdes.2016.08.032.
    [7]
    MOUSANEZHAD D, EBRAHIMI H, HAGHPANAH B, et al. Spiderweb honeycombs [J]. International Journal of Solids and Structures, 2015, 66: 218–227. DOI: 10.1016/j.ijsolstr.2015.03.036.
    [8]
    SUN Y T, WANG B, PUGNO N, et al. In-plane stiffness of the anisotropic multifunctional hierarchical honeycombs [J]. Composite Structures, 2015, 131: 616–624. DOI: 10.1016/j.compstruct.2015.06.020.
    [9]
    张越, 李世强, 王志华. 二阶层级自相似四边形蜂窝动力压缩行为数值模拟 [J]. 高压物理学报, 2017, 31(4): 358–363. DOI: 10.11858/gywlxb.2017.04.002.

    ZHNAG Y, LI S Q, WANG Z H. Dynamic crushing response of self-similar second order hierarchical square honeycombs [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 358–363. DOI: 10.11858/gywlxb.2017.04.002.
    [10]
    于国际, 李飞鹏, 李世强, 等. 二阶层级自相似六边形蜂窝的面内压缩行为 [J]. 太原理工大学学报, 2018, 49(3): 494–500. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.03.021.

    YU G J, LI F P, LI S Q, et al. In-plane compressive behavior of a self-similar second order hierarchical hexagonal honeycomb [J]. Journal of Taiyuan University of Technology, 2018, 49(3): 494–500. DOI: 10.16355/j.cnki.issn1007-9432tyut.2018.03.021.
    [11]
    赖燕辉, 江五贵, 吴瑶. 自相似多级纳米蜂窝铝结构力学性能的分子动力学模拟 [J]. 复合材料学报, 2019, 36(4): 946–953. DOI: 10.13801/j.cnki.fhclxb.20180517.001.

    LAI Y H, JIANG W G, WU Y. Molecular dynamics simulation on mechanical properties of nano self-similar hierarchical honeycomb Al [J]. Acta Materiae Compositae Sinica, 2019, 36(4): 946–953. DOI: 10.13801/j.cnki.fhclxb.20180517.001.
    [12]
    SIERPINSKI W. Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue [J]. Rendiconti del Circolo Matematico di Palermo, 1916, 41(1): 187–190. DOI: 10.1007/BF03018294.
    [13]
    SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering, 2000, 24(5): 509–534. DOI: 10.1016/S0734-743X(99)00036-6.
    [14]
    ZHANG X, ZHANG H. Energy absorption of multi-cell stub columns under axial compression [J]. Thin-Walled Structures, 2013, 68: 156–163. DOI: 10.1016/j.tws.2013.03.014.
    [15]
    ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes [J]. International Journal of Impact Engineering, 1984, 2(2): 179–208. DOI: 10.1016/0734-743X(84)90005-8.
    [16]
    CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption [J]. Thin-Walled Structures, 2001, 39(4): 287–306. DOI: 10.1016/S0263-8231(01)00006-4.
    [17]
    HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminum extrusions with aluminum foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475-507. DOI: 10.1016/S0734-743X(99)00170-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (1763) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return