[1] | HUANG Yuxiong, GUO Rui, QIN Jiang, NIU Yanjie, XU Chang, ZHANG Xinyan. Study on the mechanism of explosion flame propagation of aluminum powder coated with stearic acid[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0268 |
[2] | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[3] | ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064 |
[4] | LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176 |
[5] | LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140 |
[6] | LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408 |
[7] | LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004 |
[8] | YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436 |
[9] | SUN Song, GAO Kanghua, QIU Yanyu, WANG Mingyang. A sub-step calculation model of gas explosion venting pressure and its turbulent correction[J]. Explosion And Shock Waves, 2019, 39(5): 054203. doi: 10.11883/bzycj-2017-0399 |
[10] | REN Shaoyun. The leakage, low temperature diffusion and explosion of liquefied natural gas in open space[J]. Explosion And Shock Waves, 2018, 38(4): 891-897. doi: 10.11883/bzycj-2016-0323 |
[11] | ZHANG Hongming, CHEN Xianfeng, ZHANG Ying, NIU Yi, DAI Huaming, HUANG Chuyuan. Flame propagation velocities of cornstarch dust explosion based on RGB color model[J]. Explosion And Shock Waves, 2018, 38(1): 133-139. doi: 10.11883/bzycj-2016-0278 |
[12] | DU Yang, QI Sheng, LI Guoqing, WANG Shimao, LI Yangchao. A model of gaseous deflagration flame propagation outside the open end of a short duct[J]. Explosion And Shock Waves, 2018, 38(5): 1057-1063. doi: 10.11883/bzycj-2017-0060 |
[13] | ZHOU Ning, WAND Wenxiu, ZHANG Guowen, Zong Yongdi, ZHAO Huijun, YUAN Xiongjun. Effect of obstacles on flame acceleration of propane-air explosion[J]. Explosion And Shock Waves, 2018, 38(5): 1106-1114. doi: 10.11883/bzycj-2017-0109 |
[14] | Li Yangchao, Du Yang, Qi Sheng, Li Guoqing, Wang Shimao. Gasoline vapor/air premixed flame's unstretched laminar burning velocity[J]. Explosion And Shock Waves, 2017, 37(5): 863-870. doi: 10.11883/1001-1455(2017)05-0863-08 |
[15] | Cao Wei-guo, Xu Sen, Liang Ji-yuan, Gao Wei, Pan Feng, Rao Guo-ning. Characteristics of flame propagation during coal dust cloud explosion[J]. Explosion And Shock Waves, 2014, 34(5): 586-593. doi: 10.11883/1001-1455(2014)05-0586-08 |
[16] | Yu Jian-liang, Yan Xing-qing. Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion And Shock Waves, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06 |
[17] | LI Ping, DING Jue, WENG Pei-fen. A numerical simulation on liquid-gas two phase leakage dispersion by using two particle turbulent models[J]. Explosion And Shock Waves, 2005, 25(6): 541-546. doi: 10.11883/1001-1455(2005)06-0541-06 |