[1] | WANG Min, WEN Heming. Numerical simulations of response and failure of carbon nanotube/carbon fibre reinforced plastic laminates under impact loading[J]. Explosion And Shock Waves, 2022, 42(3): 033102. doi: 10.11883/bzycj-2021-0050 |
[2] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[3] | WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467 |
[4] | HE Nianfeng, REN Guowu, CHEN Yongtao, GUO Zhaoliang. Numerical simulation on spallation and fragmentation of tin under explosive loading[J]. Explosion And Shock Waves, 2019, 39(4): 042101. doi: 10.11883/bzycj-2017-0354 |
[5] | ZHANG Fengguo, LIU Jun, WANG Pei, HU Xiaomian, ZHOU Hongqiang, SHAO Jianli, FENG Qijing. Multi-spall in ductile metal under triangular impulse loading[J]. Explosion And Shock Waves, 2018, 38(3): 659-664. doi: 10.11883/bzycj-2016-0279 |
[6] | Zhang Lin, Li Yinghua, Zhang Zugen, Li Xuemei, Hu Changming, Cai Lingcang. Asay window for probing the microspall of materials[J]. Explosion And Shock Waves, 2017, 37(4): 692-698. doi: 10.11883/1001-1455(2017)04-0692-07 |
[7] | Wu Xutao, Liao Li. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design[J]. Explosion And Shock Waves, 2017, 37(4): 705-711. doi: 10.11883/1001-1455(2017)04-0705-07 |
[8] | Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07 |
[9] | Zhang Jie, Su Shao-qing, Zheng Yu, Wang Xiao-jun. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion And Shock Waves, 2013, 33(4): 401-407. doi: 10.11883/1001-1455(2013)04-0401-07 |
[10] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[11] | WANG Yuan-bo, WANG Xiao-jun, BIAN Liang, YU Yu-miao. CDM model and its application to numerical simulation on fiber-reinforced laminate under penetration[J]. Explosion And Shock Waves, 2008, 28(2): 172-177. doi: 10.11883/1001-1455(2008)02-0172-06 |
[12] | ZHANG Lei, HU Shi-sheng, CHEN De-xing, ZHANG Shou-bao, YU Ze-qing, LIU Fei. Spall characteristics of concrete materials[J]. Explosion And Shock Waves, 2008, 28(3): 193-199. doi: 10.11883/1001-1455(2008)03-0193-07 |
[13] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[14] | ZHANG Feng-guo, QIN Cheng-sen, ZHOU Hong-qiang. Numerical meso-analysis on spalling damage[J]. Explosion And Shock Waves, 2006, 26(2): 125-128. doi: 10.11883/1001-1455(2006)02-0125-04 |
[15] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[16] | GUI Yu-lin, LIU Cang-li, WANG Yan-ping, SUN Cheng-wei. The spall fracture mechanism and numerical simulation of no-Co-alloy steel[J]. Explosion And Shock Waves, 2005, 25(2): 183-188. doi: 10.11883/1001-1455(2005)02-0183-06 |
[17] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |