[1] | LI Yinglei, LIU Mingtao, CHEN Yan, ZHANG Shiwen, TANG Tiegang. Technologies for loading and diagnosis of expanding cylinder experiments with linearly-initiated explosives[J]. Explosion And Shock Waves, 2022, 42(12): 124101. doi: 10.11883/bzycj-2021-0484 |
[2] | ZHANG Shiwen, JIN Shan, CHEN Yan, GUO Zhaoliang, DAN Jiakun, LIU Mingtao, TANG Tiegang. Influence of a cushion on dynamic expansion and fracture of an explosively-driven metallic cylinder[J]. Explosion And Shock Waves, 2022, 42(8): 083102. doi: 10.11883/bzycj-2021-0456 |
[3] | WU Sisi, DONG Xinlong, YU Xinlu. An investigating on explosive expanding fracture of 45 steel cylinders by SPH method[J]. Explosion And Shock Waves, 2021, 41(10): 103101. doi: 10.11883/bzycj-2021-0172 |
[4] | ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449 |
[5] | LIU Mingtao, TANG Tiegang. Key physical problems in the expanding fracture of explosively driven metallic shells[J]. Explosion And Shock Waves, 2021, 41(1): 011402. doi: 10.11883/bzycj-2020-0351 |
[6] | LUO Yusong, LI Weibing, CHEN Zhichuang, WANG Xiaoming, LI Wenbin. A freezing recovery method for metallic cylinder shells under internal explosive loading[J]. Explosion And Shock Waves, 2020, 40(10): 104101. doi: 10.11883/bzycj-2020-0041 |
[7] | Ren Guowu, Wen Shangjie, Zhang Ru, Guo Zhaoliang, Tang Tiegang. Numerical simulation of influence of constrained layer on expanding deformation of metal cylindrical shell[J]. Explosion And Shock Waves, 2017, 37(6): 946-951. doi: 10.11883/1001-1455(2017)06-0946-06 |
[8] | Chen Yongtao, Hong Renkai, Chen Haoyu, Hu Haibo, Tang Tiegang. Micro-spalling of metal under explosive loading[J]. Explosion And Shock Waves, 2017, 37(1): 61-67. doi: 10.11883/1001-1455(2017)01-0061-07 |
[9] | Guo Zhaoliang, Fan Cheng, Liu Mingtao, Ren Guowu, Tang Tiegang, Liu Cangli. Fracture mode transition in expanding ring and cylindrical shell under electromagnetic and explosive loadings[J]. Explosion And Shock Waves, 2017, 37(6): 1072-1079. doi: 10.11883/1001-1455(2017)06-1072-08 |
[10] | Zhang Ke, Tang Zhi-ping. Experimental study of TiNi tubes under radial impact with and without lateral constraint[J]. Explosion And Shock Waves, 2015, 35(3): 296-303. doi: 10.11883/1001-1455-(2015)03-0296-08 |
[11] | Jin Shan, Liu Xin, Yuan Shuai, Hua Jin-song, Tang Tie-gang. Method for calculating small difference of fracture time of cylinder shell unloaded by detonation[J]. Explosion And Shock Waves, 2015, 35(1): 130-134. doi: 10.11883/1001-1455(2015)01-0130-05 |
[12] | Zhang Zhi-biao, Huang Feng-lei. The number of circumferential fragments of a cylindrical shell subjected to internal explosive loading[J]. Explosion And Shock Waves, 2015, 35(5): 763-767. doi: 10.11883/1001-1455(2015)05-0763-05 |
[13] | Ren Guo-wu, Guo Zhao-liang, Zhang Shi-wen, Tang Tie-gang, Jin Shan, Hu Hai-bo. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell[J]. Explosion And Shock Waves, 2015, 35(6): 895-900. doi: 10.11883/1001-1455(2015)06-0895-06 |
[14] | Liu Ming-tao, Tang Tie-gang, Hu Hai-bo, Li Qing-zhong, Hu Xiu-zhang, Li Yong-chi. Numerical studies of explosion induced cylindrical shell fractureunder different detonating modes[J]. Explosion And Shock Waves, 2014, 34(4): 415-420. doi: 10.11883/1001-1455(2014)04-0415-06 |
[15] | Wang Qiong-jiao, Guo Wei-guo, Zuo Hong-xing, Xu Feng, Zeng Zhi-yin, Shao Xiao-jun. Fracture toughness of ultrastrength steel 18NiC250 at different loading rates[J]. Explosion And Shock Waves, 2013, 33(3): 238-242. doi: 10.11883/1001-1455(2013)03-0238-05 |
[16] | TANG Tie-gang, LI Qing-zhong, SUN Xue-lin, SUN Zhan-feng, JIN Shan, GU Yan. Strain-rate effects of expanding fracture of 45 steel cylinder shells driven by detonation[J]. Explosion And Shock Waves, 2006, 26(2): 129-133. doi: 10.11883/1001-1455(2006)02-0129-05 |