[1] | HE Yong, XU Tianhan, ZHANG Xiaohan, SUI Yaguang, XING Haozhe. Analysis of the size effect on the penetration depth of earth-penetrating projectiles and practical calculating formula[J]. Explosion And Shock Waves, 2025, 45(4): 043301. doi: 10.11883/bzycj-2024-0248 |
[2] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[3] | HONG Zhijie, YANG Yaozong, KONG Xiangzhen, FANG Qin. Practical engineering calculation models for rigid projectile penetrating and perforating into concrete target[J]. Explosion And Shock Waves, 2023, 43(8): 083302. doi: 10.11883/bzycj-2022-0482 |
[4] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[5] | CHENG Yuehua, JIANG Pengfei, WU Hao, TAN Keke, FANG Qin. On penetration depth of typical earth-penetrating projectilesinto concrete targets considering the scaling effect[J]. Explosion And Shock Waves, 2022, 42(6): 063302. doi: 10.11883/bzycj-2021-0373 |
[6] | WANG Xiaodong, WANG Jiangbo, XU Lizhi, DU Zhonghua, GAO Guangfa. Experimental study on penetration of non-circular cross-section long-rod projectiles into semi-infinite metal target[J]. Explosion And Shock Waves, 2021, 41(3): 031403. doi: 10.11883/bzycj-2020-0335 |
[7] | LIU Yongyou, YANG Huawei, ZHANG Jie, WANG Zhiyong, WANG Zhihua. A resistance model for a rigid flat projectile penetrating a reinforced concrete target[J]. Explosion And Shock Waves, 2020, 40(3): 033301. doi: 10.11883/bzycj-2018-0389 |
[8] | WANG Jie, WU Haijun, ZHOU Jiequn, SHI Xiaohai, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment research and crater analysis of long rodhypervelocity penetration into concrete[J]. Explosion And Shock Waves, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439 |
[9] | WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291 |
[10] | DENG Yongjun, SONG Wenjie, CHEN Xiaowei, YAO Yong. A dynamic cavity-expansion penetration model of compressible elastic-plastic response for reinforced concrete targets[J]. Explosion And Shock Waves, 2018, 38(5): 1023-1030. doi: 10.11883/bzycj-2017-0043 |
[11] | LI Peng, LI Gang, YUAN Baohui, ZHOU Tao, SUN Xingyun. A rod-shaped explosively formed penetrator warhead[J]. Explosion And Shock Waves, 2018, 38(4): 883-890. doi: 10.11883/bzycj-2016-0356 |
[12] | Zhang Xinxin, Wu Haijun, Huang Fenglei, Duan Zhuoping, Pi Aiguo. Mechanical model of the grooved-tapered projectile penetrating concrete targets[J]. Explosion And Shock Waves, 2016, 36(1): 75-80. doi: 10.11883/1001-1455(2016)01-0075-06 |
[13] | HE Li-ling, CHEN Xiao-wei, FAN Ying. Metallographicobservationofreduced-scaleadvancedEPW
afterhigh-speedpenetration[J]. Explosion And Shock Waves, 2012, 32(5): 515-522. doi: 10.11883/1001-1455(2012)05-0515-08 |
[15] | LIANG Bin, CHEN Xiao-wei, JI Yong-qiang, HUANG Han-jun, GAO Hai-ying, . Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion And Shock Waves, 2008, 28(1): 1-9. doi: 10.11883/1001-1455(2008)01-0001-09 |