[1] | XIANG Shuyi, XUE Songbo, DU Zhibo, ZHAO Yang, WANG Xinghao, TIAN Xu, GAO Zhiqiang, FENG Guodong, FEI Zhou, ZHUANG Zhuo, LIU Zhanli. Experimental study on the law of rupture of pig eardrum based on free-field explosion[J]. Explosion And Shock Waves, 2024, 44(12): 121431. doi: 10.11883/bzycj-2024-0255 |
[2] | REN Qingfei, ZHANG Yongrou, HU Lingling, YIN Ziji. A new experimental technique of dynamic compression-shear combined loading based on metamaterials[J]. Explosion And Shock Waves, 2024, 44(10): 101001. doi: 10.11883/bzycj-2024-0297 |
[3] | LI Yanchao, LIANG Bo, JIANG Yuting. Prediction of natural gas explosion overpressure considering external turbulence[J]. Explosion And Shock Waves, 2023, 43(11): 115402. doi: 10.11883/bzycj-2023-0098 |
[4] | LIU Bowen, LONG Renrong, ZHANG Qingming, JU Yuanyuan, ZHONG Xianzhe, WANG Haiyang, LIU Wenjin. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin[J]. Explosion And Shock Waves, 2023, 43(1): 012201. doi: 10.11883/bzycj-2022-0232 |
[5] | YANG Renshu, ZHAO Yong, ZHAO Jie, ZUO Jinjing, GE Fengyuan, CHEN Cheng, DING Chenxi. Experimental study on evolution of strain field of explosion stress wave passing through a heterogeneous interface based on the DIC method[J]. Explosion And Shock Waves, 2022, 42(12): 123201. doi: 10.11883/bzycj-2022-0097 |
[6] | LI Jingye, JIANG Xinsheng, YU Binbin, WANG Chunhui, WANG Zituo. Visualization experimental research of oil gas vapor cloud deflagration in large-scale unconfined space[J]. Explosion And Shock Waves, 2022, 42(3): 035401. doi: 10.11883/bzycj-2021-0176 |
[7] | LI Yanchao, BI Mingshu, GAO Wei. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation[J]. Explosion And Shock Waves, 2021, 41(7): 072101. doi: 10.11883/bzycj-2020-0140 |
[8] | LIU Chong, DU Yang, LIANG Jianjun, ZHANG Peili, MENG Hong. Large eddy simulation of gasoline/air mixture explosion in a semi-confined space with bilateral branches[J]. Explosion And Shock Waves, 2020, 40(6): 064202. doi: 10.11883/bzycj-2019-0408 |
[9] | LI Yanchao, BI Mingshu, GAO Wei. Explosion pressure prediction considering the flame instabilities[J]. Explosion And Shock Waves, 2020, 40(1): 012101. doi: 10.11883/bzycj-2019-0004 |
[10] | WANG Xinying, WANG Shushan, LU Xi, WANG Jianmin. Overpressure-impulse damage criterion of air shock waves on biological targets[J]. Explosion And Shock Waves, 2018, 38(1): 106-111. doi: 10.11883/bzycj-2017-0031 |
[11] | RAO Guoning, ZHOU Li, SONG Shuzhong, XIE Lifeng, LI Bin, PENG Jinhua. Explosion overpressure measurement and power evaluation of FAE[J]. Explosion And Shock Waves, 2018, 38(3): 579-585. doi: 10.11883/bzycj-2016-0245 |
[12] | Zhang Yun-ming, Liu Qing-ming, Li Lei, Wang Jian-ping. Experimental study on transient high temperature measurement in explosive field[J]. Explosion And Shock Waves, 2014, 34(5): 513-520. doi: 10.11883/1001-1455(2014)05-0513-08 |
[13] | Yu Jian-liang, Yan Xing-qing. Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion And Shock Waves, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06 |
[14] | PAN Hao, HU Xiao-mian. Numerical simulation for overdriven and shocking-to-detonation transition of insensitive high explosives[J]. Explosion And Shock Waves, 2006, 26(2): 174-178. doi: 10.11883/1001-1455(2006)02-0174-05 |
[15] | WANG Fang, FENG Shun-shan. Experimental research on evaluation method of damage power of FAE warhead[J]. Explosion And Shock Waves, 2006, 26(2): 179-182. doi: 10.11883/1001-1455(2006)02-0179-04 |