[1] | ZHANG Pengfei, LIU Zhifang, LI Shiqiang. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071402. doi: 10.11883/bzycj-2019-0418 |
[2] | CHENG Shuai, SHI Yingju, YIN Wenjun, LIU Wenxiang, TANG Shiying, ZHANG Dezhi. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339 |
[3] | ZHANG Yongkang, LI Yulong, TANG Zhongbin, YANG Hong, XU Hai. Dynamic response of aluminum-foam-based sandwich panelsunder hailstone impact[J]. Explosion And Shock Waves, 2018, 38(2): 373-380. doi: 10.11883/bzycj-2016-0232 |
[4] | Zhang Fengguo, Hu Xiaomian, Wang Pei, Shao Jianli, Zhou Hongqiang, Feng Qijing. Numerical analysis of spall response in aluminum with helium bubbles[J]. Explosion And Shock Waves, 2017, 37(4): 699-704. doi: 10.11883/1001-1455(2017)04-0699-06 |
[5] | Zhang Boyi, Zhao Wei, Wang Li, Wang Wei, Wu Gaohui, Zhang Qiang. Dynamic response of aluminum matrix syntactic foams sandwich panel subjected to foamed aluminum projectile impact loading[J]. Explosion And Shock Waves, 2017, 37(4): 600-610. doi: 10.11883/1001-1455(2017)04-0600-11 |
[6] | Li Zhibin. Indentation responses of closed-cell aluminum foams at elevated temperatures[J]. Explosion And Shock Waves, 2016, 36(5): 734-738. doi: 10.11883/1001-1455(2016)05-0734-05 |
[7] | Tan Si-bo, Hou Bing, Li Yu-long, Zhao Han. Effect of base materials on the dynamic enhancement of aluminium honeycombs[J]. Explosion And Shock Waves, 2015, 35(1): 16-21. doi: 10.11883/1001-1455(2015)01-0016-06 |
[8] | Zhang Chao, Xu Song-lin, Wang Peng-fei, Zhang Lei. Deformation and stress nonuniformity of aluminum foam under different impact speeds[J]. Explosion And Shock Waves, 2015, 35(4): 567-575. doi: 10.11883/1001-1455(2015)04-0567-09 |
[9] | Zhang Yong, Chen Li, Chen Rong-jun, Xie Wei-hong. Dynamic mechanical property experiment and constitutive model establishment of polyurethane foam aluminum[J]. Explosion And Shock Waves, 2014, 34(3): 373-378. doi: 10.11883/1001-1455(2014)03-0373-06 |
[10] | Wang Peng-fei, Xu Song-lin, Li Zhi-bin, Hu Shi-sheng. An experimental study on dynamic mechanical property ofultra-light aluminum foam under high temperatures[J]. Explosion And Shock Waves, 2014, 34(4): 433-438. doi: 10.11883/1001-1455(2014)04-0433-06 |
[11] | Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07 |
[12] | NiXiao-jun, MaHong-hao, ShenZhao-wu, LiLe. NumericalstudyonimpactpropertiesofAlfoamunderexplosiveloading[J]. Explosion And Shock Waves, 2013, 33(2): 120-125. doi: 10.11883/1001-1455(2013)02-0120-06 |
[13] | YANG Bao, TANG Li-qun, LIU Yi-ping, HUANG Xiao-qing, . Mesodeformationcharacteristicsanalysisofaluminumfoamunderimpact[J]. Explosion And Shock Waves, 2012, 32(4): 399-403. doi: 10.11883/1001-1455(2012)04-0399-05 |
[14] | HUANG Lian, ZHANG Jin, ZHA Chang-song, CHEN Xian-gang, WANG Hui-juan. Passive-shock-isolationtechnologiesbased
onAlfoamenergyabsorbers[J]. Explosion And Shock Waves, 2011, 31(6): 606-611. doi: 10.11883/1001-1455(2011)06-0606-06 |
[15] | LIU Wei-ming, CHENG He-fa, HUANG Xiao-mei, PAN Zhen-ya. Quasi-static compression behaviors of cylindrical tubes filled with open-cell aluminum foam[J]. Explosion And Shock Waves, 2009, 29(6): 654-658. doi: 10.11883/1001-1455(2009)06-0654-05 |
[16] | WANG Zhi-hua, CAO Xiao-qing, MA Hong-wei, ZHAO Long-mao, YANG Gui-tong. Experimental studies on the dynamic compressive properties of open-celled aluminum alloy foams[J]. Explosion And Shock Waves, 2006, 26(1): 46-52. doi: 10.11883/1001-1455(2006)01-0046-07 |
[17] | CHENG He-fa, HUANG Xiao-mei, WANG Qiang, TIAN Jie, HAN Fu-sheng. The dynamic compressive behaviors of an open-cell aluminum foam[J]. Explosion And Shock Waves, 2006, 26(2): 169-173. doi: 10.11883/1001-1455(2006)02-0169-05 |