Volume 34 Issue 1
Mar.  2014
Turn off MathJax
Article Contents
Ma Qiu-ju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion And Shock Waves, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05
Citation: Ma Qiu-ju, Zhang Qi, Pang Lei. Numerical simulation on interaction between laneway surface and methane explosion[J]. Explosion And Shock Waves, 2014, 34(1): 23-27. doi: 10.11883/1001-1455(2014)01-0023-05

Numerical simulation on interaction between laneway surface and methane explosion

doi: 10.11883/1001-1455(2014)01-0023-05
Funds:  Supported by the National Natural Science Foundation of China (11372044)
  • Received Date: 2012-07-16
  • Rev Recd Date: 2013-01-08
  • Publish Date: 2014-01-25
  • To investigate the effects of the laneway surfaces on the methane explosion, the mechanism of the methane explosion was analyzed and a physical model for the laneway was proposed.Based on the above, numerical simulations were conducted to explore the effects of the inner surface roughness on the explosion propagation by modifying the drag coefficient and the turbulent length scale in the reaction model of the methane explosion.The simulated results display that the laneway surface can influence evidently the methane explosion in it.The higher the values of the drag coefficient and the turbulent length scale, the higher the peak overpressure of the methane explosion.And the simulated results correspond best to the experimental data when the drag coefficient and the turbulent length scale are 3 and 0.008, respectively.
  • loading
  • [1]
    Bjerketvedt D, Bakke J R, van Wingerden K. Gas explosion handbook[J]. Journal of Hazardous Materials, 1997, 52(1): 1-150. doi: 10.1016/S0304-3894(97)81620-2
    [2]
    Peraldi O, Knystautas R, Lee J H. Criteria for transition to detonation in tubes[J]. Symposium(International)on Combustion, 1988, 21(1): 1629-1637.
    [3]
    Pang L, Zhang Q, Wang T, et al. Influence of laneway support spacing on methane/air explosion shock wave[J]. Safety Science, 2012, 50(1): 83-89. doi: 10.1016/j.ssci.2011.07.005
    [4]
    曲志明.掘进巷道瓦斯爆炸数值及实验分析[J].湖南科技大学学报:自然科学版, 2008, 23(2): 9-14.

    Qu Zhi-ming. Numerical and experimental analysis of gas explosion in the excavation[J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2008, 23(2): 9-14.
    [5]
    Popat N R, Catlin C A, Arntzenb B J. Investigations to improve and assess the accuracy of computational fluid dynamic based explosion models[J]. Journal of Hazardous Materials, 1996, 45(1): 1-25. doi: 10.1016/0304-3894(95)00042-9
    [6]
    Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in Stramberk experimental mine and Auto-ReaGas simulation[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 280-287.
    [7]
    Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002, 95(3): 233-247. doi: 10.1016/S0304-3894(02)00161-9
    [8]
    AutoReaGas: Reactive gas dynamics and blast analysis software user manual: Version 3.1[M]. Century Dynamics and TNO, 2002.
    [9]
    AutoReaGas: Interactive software theory manual[M]. Century Dynamics and TNO, 2002.
    [10]
    吴兵.矿井半封闭空间瓦斯爆燃过程热动力学研究[D].北京: 中国矿业大学(北京), 2003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (3164) PDF downloads(519) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return