NIE Hailiang, SHI Xiaopeng, CHEN Chunyang, LI Yulong. Data processing method for bidirectional-load split Hopkinson compression bar[J]. Explosion And Shock Waves, 2018, 38(3): 517-524. doi: 10.11883/bzycj-2017-0361
Citation: Hou Xiu-cheng, Jiang Jian-wei, Chen Zhi-gang. Numerical simulation on structure modules of effective jet[J]. Explosion And Shock Waves, 2014, 34(1): 35-40. doi: 10.11883/1001-1455(2014)01-0035-06

Numerical simulation on structure modules of effective jet

doi: 10.11883/1001-1455(2014)01-0035-06
  • Received Date: 2012-07-16
  • Rev Recd Date: 2012-12-17
  • Publish Date: 2014-01-25
  • The typical copper liner with a small cone angle was divided into four sections along the bus direction via the explicit finite software LS-DYNA, and the tracer point method was used to study the movement of the liner element and the structure modules of the effective metallic jet.The result indicates that the liner material may be divided into six sections by velocity interval after the jet formation and stabilization.The highest-velocity section is made of the top material inside the liner, and the mid-higher velocity section and the mid-velocity section made of the middle and lower half material inside the liner, respectively.In the height range of about 0.25times as high as the liner height away from the liner bottom, the liner material can not become effective jets.And the initial material elements of the liner are distributed as tubular in the effective jet.
  • [1]
    肖川, 莫红军, 苏健军, 等.常规战斗部毁伤技术中的能量学问题分析[J].火炸药学报, 2011, 35(增刊): 1-5.

    Xiao Chuan, Mo Hong-jun, Su Jian-jun, et al. Energy problem of general warhead[J]. Chinese Journal of Explosives & Propellants, 2011, 35(suppl): 1-5.
    [2]
    Walters W P, Zukas J A. Fundamentals of shaped charges[M]. New York: Wiley Press, 1989.
    [3]
    于骐.某破甲弹药型罩各微元破甲效率[J].华东工程学院学报, 1978, (3): 119-125.
    [4]
    赵国志.某破甲弹杵体分析[J].华东工程学院学报, 1978(3): 107-118.
    [5]
    朱鹤荣, 龚良贵.破甲技术文集(二): 示踪点法杵体回收的实验室研究[M].北京: 国防工业出版社, 1982.
    [6]
    裴思行.聚能装药射流的结构模式研究[J].太原机械学院学报, 1986(3): 97-102.

    Pei Si-xing. A study for the jet constitutive mode of shaped charge[J]. Journal of Taiyuan Institute of Machinery, 1986(3): 97-102.
    [7]
    陈智刚, 侯秀成, 李守苍, 等.高速破甲弹破甲稳定性数值模拟与实验研究[J].弹箭与制导学报, 2009, 29(1): 124-127. doi: 10.3969/j.issn.1673-9728.2009.01.035

    Chen Zhi-gang, Hou Xiu-cheng, Li Shou-cang, et al. Numerical simulation and experimental study of high-speed high explosive antitank projectile stability[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 124-127. doi: 10.3969/j.issn.1673-9728.2009.01.035
    [8]
    王成, 付晓磊, 宁建国.起爆方式对聚能射流性能影响的数值分析[J].北京理工大学学报, 2006, 26(5): 401-404. doi: 10.3969/j.issn.1001-0645.2006.05.006

    Wang Cheng, Fu Xiao-lei, Ning Jian-guo. Numerical simulation of shaped charge jet formation under different ways of initiation[J]. Transactions of Beijing Institute of Technology, 2006, 26(5): 401-404. doi: 10.3969/j.issn.1001-0645.2006.05.006
    [9]
    蒋建伟, 帅俊峰, 李娜, 等.多模毁伤元形成与侵彻效应的数值模拟[J].北京理工大学学报, 2008, 28(9): 756-758.

    Jiang Jian-wei, Shuai Jun-feng, Li Na, et al. Numerical simulation of the formation of multimode EFP and its penetration effect to RHA[J]. Transactions of Beijing Institute of Technology, 2008, 28(9): 756-758.
    [10]
    侯秀成, 陈智刚.成型装药射流速度梯度数值模拟[J].弹箭与制导学报, 2009(6): 115-117. doi: 10.3969/j.issn.1673-9728.2009.06.031

    Hou Xiu-cheng, Chen Zhi-gang. Numerical simulation of jet velocity gradient of shaped charge[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 115-117. doi: 10.3969/j.issn.1673-9728.2009.06.031
    [11]
    侯秀成, 蒋建伟, 陈智刚.某成型装药射流的数值模拟与射流转化率[J].火炸药学报, 2012, 35(2): 53-57. doi: 10.3969/j.issn.1007-7812.2012.02.012

    Hou Xiu-cheng, Jiang Jian-wei, Chen Zhi-gang. Numerical simulation and conversion rate of jet from a shaped charge[J]. Chinese Journal of Explosives & Propellants, 2012, 35(2): 53-57. doi: 10.3969/j.issn.1007-7812.2012.02.012
    [12]
    隋树元, 王树山.终点效应学[M].北京: 国防工业出版社, 2000: 196-278.
    [13]
    Livermore Software Technology Corporation. LS-DYNA keyword user's manual: Version 971[M]. Livermore: Livermore Software Technology Corporation, 2007.
    [14]
    白金泽. LS-DYNA3D理论基础与实例分析[M].北京: 科学出版社, 2005.
    [15]
    时党勇, 李裕春.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京: 清华大学出版社, 2005.
    [16]
    北京理工大学八系.爆炸及其作用: 下册[M].北京: 国防工业出版社, 1979.
    [17]
    解永红, 陈智刚, 赵太勇.聚能装药药型罩作用机理的实验解析[J].弹箭与制导学报, 2004, 24(1): 54-55. doi: 10.3969/j.issn.1673-9728.2004.01.019

    Xie Yong-hong, Chen Zhi-gang, Zhao Tai-yong. Experiment analysis about the process of working shaped charge liner[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(1): 54-55. doi: 10.3969/j.issn.1673-9728.2004.01.019
    [18]
    奥尔连科Л П.爆炸物理学[M].孙承纬, 译. 3版.北京: 科学出版社, 2011.
    [19]
    王儒策, 赵国志.弹丸终点效应[M].北京: 北京理工大学出版社, 1993.
  • Cited by

    Periodical cited type(10)

    1. 张晓阳,赵飘,刘泽宇,陈国豪,王治樵. 不同侧限及荷载比例工况下泡沫金属冲击性能研究. 南华大学学报(自然科学版). 2024(01): 46-52 .
    2. 王晓荷,曹增强,郭映江,郭程翔,王玥浩轩. 基于电磁加载的冲击测试方法及应用. 航空制造技术. 2024(07): 112-124 .
    3. 王思聪,南海鹏,赵思晗. 双向拉伸Hopkinson斜杆加载方法的探索与研究. 振动与冲击. 2023(19): 117-124 .
    4. 赵江涛. 基于Drucker-Prager准则的再生混凝土破坏研究. 混凝土与水泥制品. 2022(06): 27-30+36 .
    5. 毛继泽,曲嘉,夏培秀. SHPB虚拟仿真实验教学项目的研究与开发. 实验技术与管理. 2021(01): 187-190 .
    6. 温庆荣,李想,魏梦琦,刘宏旭,胡建飞. 高速动态ZnS玻璃力学性能测试及分析. 激光与红外. 2021(07): 903-908 .
    7. 温庆荣,蔡荣,魏梦琦,刘宏旭,胡建飞. 某机载光电设备窗口玻璃鸟撞仿真分析. 激光与红外. 2021(08): 1050-1056 .
    8. 赵思晗,郭伟国,王凡,李馨馨,陈龙洋,李小龙,王瑞丰. Hopkinson曲杆型双向拉伸加载设计探讨. 爆炸与冲击. 2021(11): 116-125 . 本站查看
    9. 李宏伟,郭婉肖,王茂,韩志伟,陈坤,王伯良. 高速撞击下温压炸药的响应敏感性. 爆破器材. 2020(05): 7-13 .
    10. 江斌,胡嘉奕,郭亚洲,李玉龙. 基于电磁Hopkinson杆的无机玻璃动态力学性能测试技术. 科学通报. 2020(31): 3475-3484 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (3240) PDF downloads(421) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return