Citation: | Lü Jun-jun, Zeng Qing-xuan, Li Ming-yu, Zhou Li-cun. Threshold impact velocity for detonation initiation in high-density TATB explosive by flyer[J]. Explosion And Shock Waves, 2014, 34(1): 125-128. doi: 10.11883/1001-1455(2014)01-0125-04 |
[1] |
Campos J, Duncombe R, Erkol S, et al. Explosive initiation by micro-slapper[C]//The 33th International Annual Conference of ICT. Karlsruhe: Fraunhofer-Institut fur Chemische Technologie, 2002: 1-10.
|
[2] |
Prinse W C, van't Hof P G, Cheng L K, et al. High-speed velocity measurements on an EFI-system[C]//The 27th International Congress on High-speed Photography and Photonics. Xi'an: International Society for Optics and Photonics, 2007: 62795E-62795E-10.
|
[3] |
He Bi, Long Xin-ping, Feng Chang-gen. Numerical simulation on shock-pulse initiation of submicron TATB[C]//The 25th International Symposium on Ballistics. Beijing, 2010: 749-758.
|
[4] |
Tarver C M, McGuire E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials[C]//The 12th International Detonation Symposium. San Diego, 2002: 641-649.
|
[5] |
Garcia M L, Tarver C M. Three-dimensional ignition and growth reactive flow modeling of prism failure tests on PBX 9502[C]//The 13th International Detonation Symposium. Norfolk, United States: Department of Energy, 2006.
|
[1] | GUO Liuwei, LIU Yusi, WANG Wei, HE Yu, GUI Yulin. The effect of the flying gap of the metal flyer on the run distance to detonation of TATB-based explosives[J]. Explosion And Shock Waves, 2025, 45(4): 041402. doi: 10.11883/bzycj-2024-0163 |
[2] | GUO Liuwei, ZHAI Zhaohui, HAN Xiufeng, WANG Wei, HE Yu, GUI Yulin. Temperature effect on the shock initiation and metal accelerating behavior for TATB/RDX-based explosive[J]. Explosion And Shock Waves, 2024, 44(1): 012301. doi: 10.11883/bzycj-2023-0192 |
[3] | Gu Qiang, Zhang Shi-hao, An Xiao-hong, Zhang Ya. Optimization design for priming parameters of two-point explosion based on gray theory[J]. Explosion And Shock Waves, 2015, 35(3): 359-365. doi: 10.11883/1001-1455(2015)03-0359-07 |
[4] | Chen Shao-jie, Wu Li-zhi, Shen Rui-qi, Ye Ying-hua, Hu Yan. Initiation of HNS-Ⅳ using a laser-driven multi-layer flyer[J]. Explosion And Shock Waves, 2015, 35(2): 285-288. doi: 10.11883/1001-1455-(2015)02-0285-04 |
[5] | Yu Jian-liang, Yan Xing-qing. Suppression of flame speed and explosion overpressure by aluminum silicate wool[J]. Explosion And Shock Waves, 2013, 33(4): 363-368. doi: 10.11883/1001-1455(2013)04-0363-06 |
[6] | Chen Lang, Liu Qun, Wy Jun-ying. On shock initiation of heated explosives[J]. Explosion And Shock Waves, 2013, 33(1): 21-28. doi: 10.11883/1001-1455(2013)01-0021-08 |
[7] | ZHANG Bo, Lee J H S, BAI Chun-hua. CriticalenergyfordirectinitiationofC2H4-O2 mixture[J]. Explosion And Shock Waves, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08 |
[8] | ZHANGBo, BAIChun-hua. Criticalenergyfordirectinitiationofsphericaldetonations inC2H2-O2-ArandC2H2-N2O-Armixtures[J]. Explosion And Shock Waves, 2012, 32(6): 592-598. doi: 10.11883/1001-1455(2012)06-0592-07 |
[9] | TAO Wei-jun, HUAN Shi, HUANG Feng-lei, JIANG Guo-ping. Lateralrarefactionwaveeffectsonshockinitiation ofheterogeneouscondensedexplosives[J]. Explosion And Shock Waves, 2011, 31(4): 397-401. doi: 10.11883/1001-1455(2011)04-0397-05 |
[10] | LI Xue-zheng, ZHANG Cheng-liu, LIU Wen-xue. Particlevelocitymodelsoflongitudinalandtransversalwaves inthenearfieldofsealedexplosions[J]. Explosion And Shock Waves, 2011, 31(2): 196-203. doi: 10.11883/1001-1455(2011)02-0196-08 |
[11] | QIAO Zhi-qiang, NIE Fu-de, YANG Guang-cheng, ZHANG Juan. Relationshipbetweenmicrostructuresofnano-TATB andshockinitiationthresholdsofitscomposites[J]. Explosion And Shock Waves, 2010, 30(1): 75-79. doi: 10.11883/1001-1455(2010)01-0075-05 |
[12] | WANG De-tian, LI Ze-ren, WU Jian-rong, LIU Shou-xian, LIU Jun, MENG Jian-hua, PENG Qi-xian, CHEN Guang-hua, LIU Qiao. An optical-fiber displacement interferometer for measuring velocities of explosively-driven metal plates[J]. Explosion And Shock Waves, 2009, 29(1): 105-108. doi: 10.11883/1001-1455(2009)01-0105-04 |
[13] | WANG Gui-ji, DENG Xiang-yang, TAN Fu-li, LIU Jun, ZHANG Ning, GU Yan, PENG Qi-xian, WU Gang, HAN Mei. Velocity measurement of the small size flyer of an exploding foil initiator[J]. Explosion And Shock Waves, 2008, 28(1): 28-31. doi: 10.11883/1001-1455(2008)01-0028-05 |
[14] | WEN Shang-gang, WANG Sheng-qiang, HUANG Wen-bin, ZHAO Feng, WANG Shi-ying, RAO Bao-xue. An experimental study on deflagration-to-detonation transition in high-density composition B[J]. Explosion And Shock Waves, 2007, 27(6): 567-571. doi: 10.11883/1001-1455(2007)06-0567-05 |
[15] | WANG Gui-ji, ZHAO Tong-hu, MO Jian-jun, WU Gang, HAN Mei, TAN Fu-li. Short-duration pulse shock initiation characteristics of a TATB/HMX-based polymer bonded explosive[J]. Explosion And Shock Waves, 2007, 27(3): 230-235. doi: 10.11883/1001-1455(2007)03-0230-06 |
[16] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |
[17] | WANG Rong-bo, TIAN Jian-hua, HE Li-hua, LI Ze-ren, ZHAO Jian-heng, WU Ting-lie. Application of fiber-optic pin to nonmetallic shock experiments[J]. Explosion And Shock Waves, 2006, 26(3): 284-288. doi: 10.11883/1001-1455(2006)03-0284-04 |
[18] | ZHOU Xiang, LONG Yuan, YUE Xiao-bing, TANG Xian-shu. An engineering computing method for the velocity of explosively-formed-projectile(EFP) based on the law of energy conservation[J]. Explosion And Shock Waves, 2005, 25(4): 378-381. doi: 10.11883/1001-1455(2005)04-0378-04 |
[19] | DENG Xiang-yang, ZHAO Jian-heng, MA Dong-li, PENG Qi-xian. Experimental study on velocity of a film flyer driven by electrical gun[J]. Explosion And Shock Waves, 2005, 25(4): 382-384. doi: 10.11883/1001-1455(2005)04-0382-03 |
[20] | HE Bi, JIANG Xiao-hua, LI Ze-ren, PENG Qi-xian, HE Song-wei, LIU Qiao, DENG Xiang-yang, LONG Xin-ping, FENG Chang-gen. Flyer velocity measurement of a exploding foil initiation system using a double-sensitivity VISAR[J]. Explosion And Shock Waves, 2005, 25(1): 31-34. doi: 10.11883/1001-1455(2005)01-0031-04 |
1. | 成云霞,贾梦雷,李焱,杜尊峰,韩晨光. 多种舰艇的医疗卫生舱室爆炸损伤模拟研究. 医疗卫生装备. 2025(01): 27-32 . ![]() | |
2. | 周猛,梁民族,陈荣,林玉亮,张玉武. 冲击波和破片联合作用下多层级复合防护结构设计与优化. 含能材料. 2025(03): 236-245 . ![]() | |
3. | 傅耀宇,贵新成,周云波,刘家志,石昊,王铮. 破片杀伤战斗部空爆状态下车顶夹芯板防护性能分析与优化设计. 兵工学报. 2024(01): 69-84 . ![]() | |
4. | 高钦和,黄通,钱秉文,沈飞,王冬,高蕾. 导弹发射车抗毁伤能力分析与评估技术研究综述. 国防科技大学学报. 2024(02): 182-196 . ![]() | |
5. | 肖翠. 西南地区灌区背景下混凝土水工建筑物问题分析及加固修补方法设计. 水利科技与经济. 2024(04): 85-89 . ![]() | |
6. | 李营,杜志鹏,陈赶超,王诗平,侯海量,李晓彬,张攀,张伦平,孔祥韶,李海涛,郭君,姚术健,王志凯,殷彩玉. 舰艇爆炸毁伤与防护若干关键问题研究进展. 中国舰船研究. 2024(03): 3-60 . ![]() | |
7. | 罗家元,付用森,陈哲伦,李世岳,王家林. 空中爆炸载荷作用下层状复合材料结构动态响应特性分析. 固体力学学报. 2024(05): 679-693 . ![]() | |
8. | 罗家元,陈哲伦,李世岳,高聪. 典型防护材料空爆载荷作用下动态响应及抗冲击设计研究现状. 复合材料科学与工程. 2024(10): 150-160 . ![]() | |
9. | 岳宝兵,金翰呈,李雄姿,杨文涛,李小双,肖定军. 聚脲涂覆钢板复合结构抗爆性能研究. 化工矿物与加工. 2023(06): 6-12 . ![]() | |
10. | 张之凡,李海龙,张桂勇,宗智,姜宜辰. 聚能装药水下爆炸冲击波和侵彻体载荷作用时序研究. 爆炸与冲击. 2023(10): 3-14 . ![]() | |
11. | 周猛,梁民族,林玉亮. 冲击波-破片联合载荷对固支方板的耦合作用机理. 兵工学报. 2023(S1): 99-106 . ![]() | |
12. | 黄涛,陈威,彭帅,施锐,柴威,李晓彬. 典型舱室在战斗部内爆下的载荷及毁伤特性试验研究. 中国舰船研究. 2023(06): 167-176 . ![]() | |
13. | 李坤,高旭东,董晓亮. 多层橡胶陶瓷复合装甲的抗侵彻性能研究. 兵器装备工程学报. 2021(07): 116-121 . ![]() | |
14. | 欧阳科峰,姚新,杨阳,李洪鑫. 迎弹面止裂层对陶瓷复合结构抗侵彻性能影响试验研究. 防护工程. 2021(04): 6-10 . ![]() | |
15. | 程远胜,谢杰克,李哲,刘均,张攀. 冲击波和破片群联合作用下高强聚乙烯/泡沫铝夹芯复合结构毁伤响应特性. 兵工学报. 2021(08): 1753-1762 . ![]() |