Volume 34 Issue 3
Aug.  2014
Turn off MathJax
Article Contents
Yu Ming, Zhang Wen-hong, Yu Heng. Confinement effect of inert materials on insensitive high explosives[J]. Explosion And Shock Waves, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07
Citation: Yu Ming, Zhang Wen-hong, Yu Heng. Confinement effect of inert materials on insensitive high explosives[J]. Explosion And Shock Waves, 2014, 34(3): 300-306. doi: 10.11883/1001-1455(2014)03-0300-07

Confinement effect of inert materials on insensitive high explosives

doi: 10.11883/1001-1455(2014)03-0300-07
Funds:  Supported by the National Natural Science Foundation of China (11272064)
  • Received Date: 2012-10-10
  • Rev Recd Date: 2013-02-22
  • Publish Date: 2014-05-25
  • In order to study the confinement effect of inert materials on insensitive high explosives, the improved shock polar curve and phenomenological reaction model were employed.The confinement types were categorized by the improved shock polar theory, which was built on the leading shock wave based on the detonation ZND model, and adopted JWL equation of state in unreacted explosives and p(ρ, T)equation of state in inert material.If the sonic velocity of the confinement material is less than the CJ velocity of an explosive, the shock polar theory can be utilized.In general, there are several types of interactions that give a"match"of the pressure and streamline-deflection across the interface between IHE and confinement material.A two-dimensional Lagrangian hydrodynamic method with three-term Lee-Tarver rate law is used to numerically simulate all types of confinement interactions.The important characters of confinement material include:compressibility, thickness, the representative assembled layers, such as bakelite-iron and iron-beryllium (iron close to the explosive).
  • loading
  • [1]
    Aslam T D, Bdzil J B. Numerical and theoretical investigation on detonation-inert confinement interactions[C]//The 12th Symposium(International)on Detonation. San Diego, California, 2002: 483-488.
    [2]
    Aslam T D, Bdzil J B. Analysis of the LANL detonation-confinement test[C]//Proceedings of the Conference on Shock Compression of Condensed Matter. Portland, OR, 2003: 831-834.
    [3]
    Aslam T D, Bdzil J B. Numerical and theoretical investigation on detonation confinement sandwich tests[C]//The 13th Symposium(International)on Detonation. Norfolk, VA, 2006: 6-10.
    [4]
    Hill L G, Aslam T D. The LANL detonation-confinement test: Prototype development and sample results[C]//Proceedings of the Conference on Shock Compression of Condensed Matter. Portland, OR, 2003: 847-850.
    [5]
    Tarver C M, McGuire E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials[C]//The 12th Symposium(International)on Detonation. San Diego, California, 2002: 641-649.
    [6]
    Garcia M L, Tarver C M. Three-dimensional ignition and growth reactive flow modeling of prism failure tests on PBX9502[R]. UCRL-CONF-222376, 2006.
    [7]
    Banks J W, Schwendeman D W, Kapila A K, et al. A study of detonation propagation and diffraction with compliant confinement[R]. UCRL-JRNL-233735, 2007.
    [8]
    Stewart D S, Yoo S, Wescott B L. High-order numerical simulation and modelling of the interaction of energetic and inert materials[J]. Combustion Theory and Modelling, 2007, 11(2): 305-332. doi: 10.1080/13647830600876629a
    [9]
    Eden G, Belcher R A. The effects of inert walls on the velocity of detonation in EDC35[C]//The 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 831-841.
    [10]
    Aveille J, Carion N. Experimental and numerical study of oblique interactions of detonation waves with explosives/solid material[C]//The 9th Symposium(International)on Detonation. Portland, Oregon, 1989: 842-851.
    [11]
    Balaganskii I A, Agureikin V A. Effect of an inert high-modulus ceramic wall on detonation propagation in solid explosive charges[J]. Combustion, Explosive and Shock Waves, 1994, 30(5): 674-681. doi: 10.1007/BF00755836
    [12]
    刘尔岩, 王元书, 刘邦弟.爆轰波与金属的斜相互作用[J].爆炸与冲击, 2002, 22(3): 203-209. doi: 10.3321/j.issn:1001-1455.2002.03.003

    Liu Er-yan, Wang Yuan-shu, Liu Bang-di. Interaction between detonation and metals[J]. Explosion and Shock Waves, 2002, 22(3): 203-209. doi: 10.3321/j.issn:1001-1455.2002.03.003
    [13]
    孙承纬, 卫玉章, 周之奎.应用爆轰物理[M].北京: 国防工业出版社, 2000.
    [14]
    经福谦.实验物态方程导引[M]. 2版.北京: 科学出版社, 1999.
    [15]
    Bdzil J B. Steady-state two-dimensional detonation[J]. Journal of Fluid Mechanics, 1981, 108(2): 195-206. http://adsabs.harvard.edu/abs/1981JFM...108..195B
    [16]
    李德元, 徐国荣, 水鸿寿, 等.二维非定常流体力学数值方法[M].北京: 科学出版社, 1987.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (3178) PDF downloads(389) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return