Liu Jian-cheng, Huang Feng-lei, Pi Ai-guo, Chai Chuan-guo, Wu Hai-jun. On enhanced penetration performance of modified nose projectiles[J]. Explosion And Shock Waves, 2014, 34(4): 409-414. doi: 10.11883/1001-1455(2014)04-0409-06
Citation: Liu Jian-cheng, Huang Feng-lei, Pi Ai-guo, Chai Chuan-guo, Wu Hai-jun. On enhanced penetration performance of modified nose projectiles[J]. Explosion And Shock Waves, 2014, 34(4): 409-414. doi: 10.11883/1001-1455(2014)04-0409-06

On enhanced penetration performance of modified nose projectiles

doi: 10.11883/1001-1455(2014)04-0409-06
Funds:  Supported bythe National Natural Science Foundation of China (11202029)
More Information
  • Corresponding author: Pi Ai-guo, aiguo_pi@bit.edu.cn
  • Received Date: 2012-12-22
  • Rev Recd Date: 2013-04-01
  • Publish Date: 2014-07-25
  • Nose shape of projectiles is an important factor influencing the penetration ability. For high speed/ultra high speed kinetic energy penetration of ideal rigid projectiles, this factor is becoming more serious. Based on the classical cavity expansion theory and designing scheme of double-ogival nose, this paper analyses the relationship between nose shape factor and the characteristic parameters of double ogive, and obtains the influence of modified nose projectiles on the penetration performance. It puts forward the design scheme of modified nose penetration body with smaller penetration resistance. The comparison among the results of nose penetration test, proves that this analysis and method are reasonable and feasible, and can be used in judgement for the design of high speed penetrator nose shape.
  • [1]
    Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5): 465-476. doi: 10.1016/0734-743X(95)00048-F
    [2]
    Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4): 395-405. doi: 10.1016/0734-743X(94)80024-4
    [3]
    Jones S E, Rule W K, Jerome D M, et al. On the optimal nose geometry for a rigid penetrator[J]. Computational Mechanics, 1998, 22(5): 413-417. doi: 10.1007/s004660050373
    [4]
    Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6): 619-637. doi: 10.1016/S0734-743X(02)00005-2
    [5]
    Zhao J, Chen X W, Jin F N, et al. Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J]. International Journal of Impact Engineering, 2010, 37(9): 971-979. doi: 10.1016/j.ijimpeng.2010.03.008
    [6]
    Batra R C, Chen X. Effect of frictional force and nose shape on axisymmetric deformation of a thick thermoviscoplastic target[J]. Acta Mechanica, 1994, 106(1/2): 87-105.
    [7]
    皮爱国.大长细比动能弹体结构动态响应研究[D].北京: 北京理工大学, 2007.
    [8]
    Bishop R F, Hill R, Mott N F. The theory of indentation and hardness tests[J]. Proceedings of the Physical Society, 1945, 57(3): 147-159. doi: 10.1088/0959-5309/57/3/301
    [9]
    Hill R. Cavitation and the influence of headshape in attack of thick targets by non-deforming projectiles[J]. Journal of the Mechanics and Physics of Solids, 1980, 28(5): 249-263.
    [10]
    Forrestal M J, Luk V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2): 275-279. doi: 10.1115/1.3173672
    [11]
    Walker J D, Anderson C E. A time-dependent model for long-rod penetration[J]. International Journal of Impact Engineering, 1995, 16(1): 19-48. doi: 10.1016/0734-743X(94)00032-R
    [12]
    Goldsmith W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2): 95-395.
    [13]
    柴传国.异型头部弹体对混凝土靶的侵彻效应研究[D].北京: 北京理工大学, 2014.
  • Cited by

    Periodical cited type(12)

    1. 王帅,邓志方,何丽灵,陈红永,李继承,颜怡霞,陈刚. 锯齿外形对弹体带攻角侵彻横向过载的影响. 爆炸与冲击. 2025(05): 3-20 . 本站查看
    2. 张博,张丁山,全嘉林,赵永刚. 头部刻槽弹体高速侵彻混凝土实验研究. 兵器装备工程学报. 2024(04): 154-158 .
    3. 屈可朋,吴翰林,郭洪福,肖玮,胡雪垚. 复合式侵彻体斜侵彻多层钢靶弹道研究. 弹道学报. 2022(01): 45-50 .
    4. 张丁山,谷鸿平,徐笑,张博,吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响. 高压物理学报. 2021(05): 138-144 .
    5. 刘坚成,渠弘毅,张晓涵,申明辉,郭立力. 头部刻槽战斗部侵彻性能机理研究. 导弹与航天运载技术. 2020(03): 21-23+37 .
    6. 邓佳杰,张先锋,刘闯,庞春旭,王文杰. 头部非对称刻槽弹体侵彻混凝土目标性能研究. 兵工学报. 2018(07): 1249-1258 .
    7. 贾宝惠,李剑峰,邓云飞. 一种异形弹撞击2A12铝合金薄靶的数值研究. 机械设计与制造. 2018(04): 72-75 .
    8. 邓佳杰,张先锋,刘闯,王文杰,徐晨阳. 头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型. 爆炸与冲击. 2018(06): 1231-1240 . 本站查看
    9. 邓佳杰,张先锋,葛贤坤,陈东东,郭磊. 基于局部相互作用理论的侵彻弹头部形状优化及仿真. 爆炸与冲击. 2017(04): 611-620 . 本站查看
    10. 刘宗伟,武海军,张学伦,刘俞平,熊国松,谭正军,曾令清. 高超弹体侵蚀机理及抗侵蚀设计研究. 兵器装备工程学报. 2017(04): 46-49 .
    11. 张学伦,刘宗伟. 弹丸CRH值对侵彻混凝土深度影响研究. 兵器装备工程学报. 2016(10): 31-34 .
    12. 马兆芳,段卓平,欧卓成,黄风雷. 弹体斜侵彻贯穿薄混凝土靶姿态变化实验和理论研究. 兵工学报. 2015(S1): 248-254 .

    Other cited types(9)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (3871) PDF downloads(608) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return