Chi Run-qiang, Ahmad Serjouei, Fan Feng, Idapalapati Sridhar. Geometrical effects on performances of ceramic/metal armors impacted by projectiles[J]. Explosion And Shock Waves, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07
Citation: Chi Run-qiang, Ahmad Serjouei, Fan Feng, Idapalapati Sridhar. Geometrical effects on performances of ceramic/metal armors impacted by projectiles[J]. Explosion And Shock Waves, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07

Geometrical effects on performances of ceramic/metal armors impacted by projectiles

doi: 10.11883/1001-1455(2014)05-0594-07
  • Received Date: 2013-04-01
  • Rev Recd Date: 2013-07-04
  • Publish Date: 2014-09-25
  • The AUTODYN code was applied to investigate the performance changes of the ceramic/metal armors under ballistic impact with the different geometrical parameters.A two-dimensional axisymmetric SPH-Lagrange model was developed, and it was validated by the experimental results.By using the SPH-Lagrange model, numerical simulations were carried out for the impact of the alumina ceramic/aluminum armors by the cylindrical tungsten projectiles in the cases of the different geometrical parameters.Based on the simulation results, the armor ballistic limit velocities of the armors were discussed considering the thicknesses and planar sizes of the armor plates as well as the lengths and diameters of the projectiles.Dimensional analysis was performed to achieve a dimensionless formula for describing the armor ballistic limit velocity varied with the geometrical parameters.And the corresponding empirical formula was given on the basis of the numerical data.
  • [1]
    张伟, 胡德安, 韩旭, 等.陶瓷/金属复合装甲冲击响应的三维SPH法分析[J].爆炸与冲击, 2011, 31(4): 373-379.

    Zhang Wei, Hu De-an, Han Xu, et al. Three-dimensional SPH analysis of impact responses of ceramic/metal composite armors[J]. Explosion and Shock Waves, 2011, 31(4): 373-379.
    [2]
    Swegle J W, Hicks D L, Attaway S W. Smoothed particle hydrodynamics stability analysis[J]. Journal of Computational Physics, 1995, 116(1): 123-134. doi: 10.1006/jcph.1995.1010
    [3]
    Gálvez V S, Paradela L S. Analysis of failure of add-on armour for vehicle protection against ballistic impact[J]. Engineering Failure Analysis, 2009, 16(6): 1837-1845. doi: 10.1016/j.engfailanal.2008.09.007
    [4]
    Abrate S. Impact engineering of composite structures[M]. New York: Springer, 2011.
    [5]
    Johnson G R, Stryk R A, Beissel S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering, 2002, 27(10): 997-1013. doi: 10.1016/S0734-743X(02)00030-1
    [6]
    Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Netherlands, 1983: 541-547.
    [7]
    Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechnics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9
    [8]
    Clausen A H, Borvik T, Hopperstad O S, et al. Flow and fracture characteristics of aluminium alloy AA5083-H116as function of strain rate, temperature and triaxiality[J]. Materials Science and Engineering: A, 2004, 364(1/2): 260-272.
    [9]
    Lee J K. Analysis of multi-layered materials under high velocity impact using CTH[D]. Ohio: Air Force Institute of Technology, 2008.
    [10]
    Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials[J]. AIP Conference Proceedings, 1994, 309(1): 981-984.
    [11]
    Anderson C E, Johnson G R, Holmquist T J. Ballistic experiments and computations of confined 99.5%AL2O3 ceramic tiles[C]//Proceeding of Fifteenth International Symposium on Ballistics. Jerusalem, Israel, 1995.
    [12]
    Lundberg P, Westerling L, Lundberg B. Influence of scale on the penetration of tungsten rods into steel-backed alumina targets[J]. International Journal of Impact Engineering, 1996, 18(4): 403-416. doi: 10.1016/0734-743X(95)00049-G
  • Cited by

    Periodical cited type(6)

    1. 张天星,余毅磊,蒋招绣,王晓东,高光发. 薄板氧化铝陶瓷复合装甲抗侵彻行为规律研究. 兵器材料科学与工程. 2022(04): 24-29 .
    2. 肖毅华,吴和成. 弹体形状对陶瓷/聚脲复合板抗侵彻性能影响的数值模拟. 应用力学学报. 2021(02): 750-755 .
    3. 张元豪,程忠庆,侯海量. 陶瓷/钛合金靶抗圆柱体弹侵彻的仿真研究. 弹道学报. 2020(02): 82-87 .
    4. 高华,熊超,殷军辉,邓辉咏. 多层异质复合靶板抗侵彻性能试验及结构优化设计. 弹道学报. 2018(03): 67-72 .
    5. 吕胜涛,季丹丹,刘荣忠,郭锐,马晓冬. S-S型旋翼末敏弹气动特性规律研究. 兵工学报. 2017(01): 50-58 .
    6. 赵晓旭,徐豫新,王树山. 抗破片侵彻钢/芳纶纤维叠层复合结构优化设计方法. 振动与冲击. 2017(08): 179-183+249 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (3309) PDF downloads(470) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return