Volume 34 Issue 6
Dec.  2014
Turn off MathJax
Article Contents
Xue Da-wen, Chen Zhi-hua, Han Jun-li. Physical characteristics of circular heavy gas cloud explosion[J]. Explosion And Shock Waves, 2014, 34(6): 759-763. doi: 10.11883/1001-1455(2014)06-0759-05
Citation: Xue Da-wen, Chen Zhi-hua, Han Jun-li. Physical characteristics of circular heavy gas cloud explosion[J]. Explosion And Shock Waves, 2014, 34(6): 759-763. doi: 10.11883/1001-1455(2014)06-0759-05

Physical characteristics of circular heavy gas cloud explosion

doi: 10.11883/1001-1455(2014)06-0759-05
Funds:  Supported bythe National Natural Science Foundationof China (11272156)
More Information
  • Corresponding author: Chen Zhi-hua, chenzh@mail.njust.edu.cn
  • Received Date: 2013-04-03
  • Rev Recd Date: 2013-09-05
  • Publish Date: 2014-11-25
  • The explosion of the high pressure, dense gas (SF6) in a circular shape was explored with the use of large eddy simulation (LES), the hybrid high-order schemes were employed to solve the LES equations.The simulated results show that while the shock wave exploding from SF6 gas to air, the incident shock bifurcates into the transmitted shock and the reflected rarefaction wave.The Richtmyer-Meshkov instabilities occur as the transmitted shock accelerates the gas interface, the rarefaction wave moves inward first and converges at the origin, this will generate a strong circular reflected shock which makes the flow field become fully turbulent.
  • loading
  • [1]
    Taylor G I. The air wave surrounding an expanding sphere[J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1946, 186: 273-292.
    [2]
    Laumbach D D. Probstein R F. A point explosion in a cold exponential atmosphere: Part 2: Radiating flow[J]. Journal of Fluid Mechanics, 1970, 40(4): 833-858.
    [3]
    Singh L P, Ram S D, Singh D B. Analytical solution of the blast wave problem in a non-ideal gas[J]. Chinese Physics Letters, 2011, 28(11): 114303-114305.
    [4]
    Marble F E, Hendrics G J, Zukoski E E. Progress toward shock enhancement of supersonic combustion processes[R]. AIAA 87-1880, 1987.
    [5]
    Oran E S, Gamezo V N. Origins of the deflagration-to-detonation transition in gas-phase combustion[J]. Combustion Flame, 2007, 148(1/2): 4-47.
    [6]
    孙晓晖, 陈志华, 张焕好.激波绕射碰撞加速诱导爆轰的数值研究[J].爆炸与冲击, 2011, 31(4): 407-412.

    Sun Xiao-hui, Chen Zhi-hua, Zhang Huan-hao. Numerical investigations on detonation initiation accelerated by collision of diffracted shock waves[J]. Explosion and Shock Waves, 2011, 31(4): 407-412.
    [7]
    Lindl J D, McCrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Physics Today, 1992, 45(9): 32-40.
    [8]
    Zabusky N. Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments[J]. Annual Review of Fluid Mechanics, 1999, 31: 495-536.
    [9]
    Brouillette M. The Richrmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002, 34: 445-468.
    [10]
    Zoldi C A. A numerical and experimental study of a shock-accelerated heavy gas cylinder[D]. New York: State University of New York, 2002:
    [11]
    Layes G, Métayer O Le. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion[J]. Physics of Fluids, 2007, 19: 042105.
    [12]
    邹立勇, 刘金宏, 谭多望, 等.弱激波冲击无膜重气柱和气帘界面的实验研究[J].高压物理学报, 2010, 24(4): 241-247.

    Zou Li-yong, Liu Jin-hong, Tan Duo-wang, et al. Experimental study on the membraneless heavy gas cylinder and gas curtain interfaces impacted by a weak shock wave[J]. Chinesee Journal of High Pressure Physics, 2010, 24(4): 241-247.
    [13]
    Zheng J G, Lee T S, Winoto S H. Numerical simulation of Richtmyer-Meshkov instability driven by imploding shocks[J]. Mathematics and Computers in Simulation, 2008, 79(3): 749-762.
    [14]
    Pullin D I. A vortex-based model for the subgrid flux of a passive scalar[J]. Physics of Fluids, 2000, 12(9): 2311-2319.
    [15]
    Hill D J, Pullin D I. Hybrid tuned center-difference-WENO method for large-eddy simulation in the presence of strong shocks[J]. Journal of Computational Physics, 2004, 194(2): 435-450.
    [16]
    Jourdan G, Hounas L. High-amplitude single-mode perturbation evolution at the Richtmyer-Meshkov instability[J]. Physical Review Letter, 2005, 95(20): 4502-4505.
    [17]
    刘金宏, 邹立勇, 柏劲松, 等.激波冲击下air/SF6界面的Richtmyer-Meshkov不稳定性[J].爆炸与冲击, 2011, 31(2): 135-140.

    Liu Jin-hong, Zou Li-yong, Bai Jing-song, et al. Richtmyer-Meshkov instability of shock-accelerated air/SF6 interfaces[J]. Explosion and Shock Waves, 2011, 31(2): 135-140.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (2986) PDF downloads(293) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return