Citation: | Guo Ya-li, Han Yan, Wang Li-ming. Overpressure reconstruction of shock wave based on generalized inverse theory[J]. Explosion And Shock Waves, 2014, 34(6): 764-768. doi: 10.11883/1001-1455(2014)06-0764-05 |
[1] |
张守中.爆炸基本原理[M].北京: 国防工业出版社, 1988, 397-530.
|
[2] |
W E贝克.空中爆炸[M〗.江科, 译.北京: 原子能出版社, 1982: 40-85.
|
[3] |
李翼祺, 马素贞.爆炸力学[M].北京: 科学出版社, 1992, 259-262.
|
[4] |
Kepler W F, Bond L J, Frangopol D M. Improved assessment of mass concrete dams using acoustic travel time tomography: Ⅱ: Aapplication[J]. Construction and Building Materials, 2000, 14(3): 147-156.
|
[5] |
裴正林, 余钦范, 狄帮让.井间地震层析成像分辨率研究[J].物探与化探, 2006, 26(3): 218-224.
Pei Zheng-lin, Yu Qin-fan, Di Bang-rang. Resolution in crosshole seismic tomography[J]. Geophysical and Geochemical Exploration, 2006, 26(3): 218-224.
|
[6] |
王振宇, 刘国华, 梁国钱.基于广义逆的层析成像反演方法研究[J].浙江大学学报:工学版, 2005, 39(1): 1-5.
Wang Zhen-yu, Liu Guo-hua, Liang Guo-qian. Study on inversion methods for travel time tomography based on generalized inverse theory[J]. Journal of Zhejiang University: Engineering Science, 2005, 39(1): 1-5.
|
[7] |
Berryman J G. Fermat's principle and nonlinear travel time tomography[J]. Physical Review Letter, 1989, 62(25): 2953-2956.
|
[1] | YU Qing, ZHANG Hui, YANG Ruizhi. Numerical simulation of the shock wave generated by electro-hydraulic effect based on LS-DYNA[J]. Explosion And Shock Waves, 2022, 42(2): 024201. doi: 10.11883/bzycj-2021-0214 |
[2] | WANG Ziguo, WANG Songtao, KONG Xiangzhen, SUN Yuyan. Anti-penetration capability of pre-stressed confined concrete with truncated cone[J]. Explosion And Shock Waves, 2022, 42(10): 103303. doi: 10.11883/bzycj-2022-0030 |
[3] | WU Cheng, SHEN Xiaojun, WANG Xiaoming, YAO Wenjin. Numerical simulation on anti-penetration and penetration depth model of mesoscale concrete target[J]. Explosion And Shock Waves, 2018, 38(6): 1364-1371. doi: 10.11883/bzycj-2017-0123 |
[4] | Jian Guozuo, Zeng Qingxuan, Guo Junfeng, Li Bing, Li Mingyu. Simulation of flyers driven by detonation of copper azide[J]. Explosion And Shock Waves, 2016, 36(2): 248-252. doi: 10.11883/1001-1455(2016)02-0248-05 |
[5] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[6] | Chen Mingsheng, Chun Hua, Li Jianping. Simulation of blast waves interaction for multiple cloud explosion[J]. Explosion And Shock Waves, 2016, 36(1): 81-86. doi: 10.11883/1001-1455(2016)01-0081-06 |
[7] | Xu Xing-chun, Gao Xin-bao, Zhang Jun-kun. Parameters fitting for the JWL EOS of expanded graphite bums agent[J]. Explosion And Shock Waves, 2015, 35(1): 124-129. doi: 10.11883/1001-1455(2015)01-0124-06 |
[8] | Li Li-sha, Du Jian-guo, Zhang Hong-hai, Xie Qing-liang. Numerical simulation of damage of brick wall subjected to blast shock vibration[J]. Explosion And Shock Waves, 2015, 35(4): 459-466. doi: 10.11883/1001-1455(2015)04-0459-08 |
[9] | Xiang Sheng-hai, Xu Wen-long, Zhang Jian, Wang Meng, Huang De-wu, Wang Di. Groove type MEFP formation and penetrating steel target's pattern[J]. Explosion And Shock Waves, 2015, 35(1): 135-139. doi: 10.11883/1001-1455(2015)01-0135-05 |
[10] | Wang Yan, Ma Tie-hua, Xu Peng, Fan Jin-biao. Identification of penetration layers based on Choi-Williams distribution[J]. Explosion And Shock Waves, 2015, 35(5): 758-762. doi: 10.11883/1001-1455(2015)05-0758-05 |
[11] | Chen Chang-xin, Jin Hong, Ma Tie-hua. Analysis of frequency-change sampling strategy for impact acceleration storage measurement[J]. Explosion And Shock Waves, 2015, 35(4): 501-506. doi: 10.11883/1001-1455(2015)04-0501-06 |
[12] | Xu Hao-ming, Gu Wen-bin, Hu Ya-feng, Wang Zhen-xiong, Chen Jiang-Hai. Explosion-proof structures and delay detonation control of tandem explosively formed projectile charges[J]. Explosion And Shock Waves, 2014, 34(6): 723-729. doi: 10.11883/1001-1455(2014)06-0723-07 |
[13] | Zhu Jun, Yang Jian-hua, Lu Wen-bo, Chen Ming, Yan Peng. Influences of blasting vibration on the sidewall of underground tunnel[J]. Explosion And Shock Waves, 2014, 34(2): 153-160. doi: 10.11883/1001-1455(2014)02-0153-08 |
[14] | LAI Ming, FENG Shun-shan, HUANG Guang-yan, BIAN Jiang-nan. Damageofdifferentreinforcedstructures subjectedtounderwatercontactexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 599-604. doi: 10.11883/1001-1455(2012)06-0599-05 |
[15] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[16] | GONG Shu-guang, RAO Gang, WU Xian-hong. Simulationinvestigationonperforationandpenetration basedonEFG method[J]. Explosion And Shock Waves, 2011, 31(6): 658-663. doi: 10.11883/1001-1455(2011)06-0658-06 |
[17] | CHEN Shao-hui, LI Zhi-yuan, LEI Bin, Lü Qing-ao. Numericalsimulationofair/steeltargetinterface effectsonparallelinjectingshapedchargejet[J]. Explosion And Shock Waves, 2011, 31(6): 630-634. doi: 10.11883/1001-1455(2011)06-0630-05 |
[18] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |
[19] | ZHOU Bu-kui, TANG De-gao, ZHOU Zao-sheng, WANG An-bao. Study of influence of hit velocity on the anti-penetration behavior of nubbly corundum concrete[J]. Explosion And Shock Waves, 2005, 25(1): 59-63. doi: 10.11883/1001-1455(2005)01-0059-05 |
[20] | MI Shuang-shan, ZHANG Xi-en, TAO Gui-ming. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target[J]. Explosion And Shock Waves, 2005, 25(5): 477-480. doi: 10.11883/1001-1455(2005)05-0477-04 |
1. | 张战飞,黄洁,宋强,封斐,丁建文. 适用于瞬态条件的多通道序列前光成像系统设计. 光学精密工程. 2024(04): 478-489 . ![]() | |
2. | 杜亮亮,钱伟新,刘寿先,赵宇,李生福,翟召辉,畅里华,朱瑜,翁继东,吴建,李俊,朱礼国. 冲击波与爆轰实验瞬态光电测试技术研究进展. 兵工学报. 2023(12): 3622-3640 . ![]() |