Volume 35 Issue 1
Feb.  2015
Turn off MathJax
Article Contents
Ding Yuan-yuan, Yang Li-ming, Wang Li-li. Experimental determination of dynamic constitutive parameters for aluminum foams[J]. Explosion And Shock Waves, 2015, 35(1): 1-8. doi: 10.11883/1001-1455(2015)01-0001-08
Citation: Ding Yuan-yuan, Yang Li-ming, Wang Li-li. Experimental determination of dynamic constitutive parameters for aluminum foams[J]. Explosion And Shock Waves, 2015, 35(1): 1-8. doi: 10.11883/1001-1455(2015)01-0001-08

Experimental determination of dynamic constitutive parameters for aluminum foams

doi: 10.11883/1001-1455(2015)01-0001-08
  • Received Date: 2013-06-13
  • Rev Recd Date: 2013-08-20
  • Publish Date: 2015-01-25
  • Based on the dynamic Rigid-Linear Hardening Plastic-Rigid Unloading (D-R-LHP-R) model of foam materials and starting from the displacement continuity equation, the momentum conservation equation and the motion equation of rigid part, the relation between the critical position for shock disappearanceXs' the yield stress Y, the shock velocity cp as well as the impact boundary strain εi can be determined as follows: $\frac{X_{\mathrm{s}}}{L_{0}}=\exp \left(-\frac{\rho_{0} c_{\mathrm{p}} v_{\mathrm{i}}}{Y}\right)=\exp \left(1-\frac{\sigma_{\mathrm{i}}}{Y}\right)=\exp \left(-\frac{\rho_{0} c_{\mathrm{p}}^{2} \varepsilon_{\mathrm{i}}}{Y}\right)$ Among the parameters in the above equation, the specimen density ρ0, the boundary stress σi, the impact velocity vi, the undeformed length of the specimen Xs, and the original length of the specimen L0, can be easily measured from the Taylor cylinder-Hopkinson bar impact experiments. Therefore, the constitutive parameters strees and strain of the R-LHP-R model can be finally reversely determined for the tested aluminum foam by using the above experimental parameters and Eq(a). The comparison of stress-strain between the quasi-static compressive curve and the R-LHP-R model indicates the strain rate sensitivity of the tested aluminum foams.
  • loading
  • [1]
    Deshpande V S, Fleck N A. High strain rate compressive behaviour of aluminum alloy foams[J]. International Journal of Impact Engineering, 2000, 24(3): 277-298. http://www.researchgate.net/publication/222567169_High_strain_rate_compressive_behaviour_of_aluminum_alloy_foams
    [2]
    Dannemann K A, James Lankford Jr. High strain rate compression of closed-cell aluminum foams[J]. Materials Science and Engineering, 2000, 293(1/2): 157-164. http://www.sciencedirect.com/science/article/pii/S0921509300012193
    [3]
    Mukai T, Kanahashi H, Miyoshi T, et al. Experimental study of energy absorption in a closed-celled aluminium foam under dynamic loading[J]. Scripta Materialia, 1999, 40(8): 921-927. http://www.sciencedirect.com/science/article/pii/S135964629900038X
    [4]
    Montanini R. Measurement of strain rate sensitivity of aluminum foams for energy dissipation[J]. International Journal of Mechanical Sciences, 2005, 47(1): 26-42. http://www.sciencedirect.com/science/article/pii/S0020740304002942
    [5]
    Lopatnikov S L, Gama B A, Haque Md J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson impact experiment[J]. Composite Structure, 2003(61): 61-71. http://www.sciencedirect.com/science/article/pii/S0263822303000394
    [6]
    Shim V P W, Tay B Y, Stronge W J. Dynamic crushing of strain-softening cellular structures-A one-dimensional analysis[J]. Journal of Engineering Materials and Technology, 1990, 112(4): 398-405. http://jxb.oxfordjournals.org/external-ref?access_num=10.1115/1.2903349&link_type=DOI
    [7]
    Li Q M, Meng H. Attenuation or enhancement-A one-dimensional analysis on shock transmission in the solid phase of cellular material[J]. International Journal of Impact Engineering, 2002(27): 1049-1065. http://www.sciencedirect.com/science/article/pii/S0734743X02000167
    [8]
    Harrigan J J, Reid S R, Yaghoubi A S. The correct analysis of shocks in a cellular material[J]. International Journal of Impact Engineering, 2010, 37(8): 918-927. http://www.sciencedirect.com/science/article/pii/S0734743X0900061X
    [9]
    Reid S R, Peng C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570. http://www.sciencedirect.com/science/article/pii/S0734743X9700016X
    [10]
    Lopatnikov S L, Gama B A, Haque M J, et al. High-velocity plate impact of metal foams[J]. International Journal of Impact Engineering, 2004, 30(4): 421-445. http://www.sciencedirect.com/science/article/pii/S0734743X03000666
    [11]
    Harrigan J J, Reid S R, Tan P J, et al. High rate crushing of wood along the grain[J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 521-544. http://www.sciencedirect.com/science/article/pii/S0020740305000421
    [12]
    Tan P J, Reid S R, Harrigan J J, et al. Dynamic compressive strength properties of aluminum foams. Part Ⅱ-'shock' theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230. http://www.ingentaconnect.com/content/el/00225096/2005/00000053/00000010/art00002
    [13]
    胡时胜, 王悟, 潘艺, 等.泡沫材料的应变率效应[J].爆炸与冲击, 2003, 23(1): 13-18.

    Hu Shi-sheng, Wang Wu, Pan Yi, et al. Strain rate effect on the properties foam materials[J]. Explosion and Shock Waves, 2003, 23(1): 13-18.
    [14]
    王永刚, 施绍裘, 王礼立.采用改进的SHPB方法对泡沫铝动态力学性能的研究[J].实验力学, 2003, 18(2): 257-264.

    Wang Yong-gang, Shi Shao-qiu, Wang Li-li. An improved SHPB method and its application in the study of dynamic mechanical behavior of aluminum foams[J]. Journal of Experimental Mechanics, 2003, 18(2): 257-264.
    [15]
    Wang Zhi-hua, Jing Lin, Zhao Long-mao. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading[J]. Transactions of Nonferrous Metals Society of China, 2011(21): 449-454. http://www.sciencedirect.com/science/article/pii/S1003632611607358
    [16]
    Zheng Zhi-jun, Liu Yao-dong, Yu Ji-lin, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes[J]. International Journal of Impact Engineering, 2012, 42: 66-79. http://www.sciencedirect.com/science/article/pii/S0734743X11001497
    [17]
    Wang Li-li, Yang Li-ming, Ding Yuan-yuan. On the energy conservation and critical velocities for the propagation of a "steady-shock" wave in a bar made of cellular material[J]. Acta Mechanica Sinica, 2013, 29(3): 420-428. http://www.cqvip.com/QK/86601X/20133/47712318.html
    [18]
    王礼立.应力波基础[M]. 2版.北京: 国防工业出版社, 2005.
    [19]
    Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Oxford: Pergamon Press, 1997.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (3444) PDF downloads(636) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return