Volume 35 Issue 2
Mar.  2015
Turn off MathJax
Article Contents
Li Mu, Sun Cheng-wei, Zhao Jian-heng. Progress in high-power laser ramp compression of solids[J]. Explosion And Shock Waves, 2015, 35(2): 145-156. doi: 10.11883/1001-1455(2015)02-0145-12
Citation: Li Mu, Sun Cheng-wei, Zhao Jian-heng. Progress in high-power laser ramp compression of solids[J]. Explosion And Shock Waves, 2015, 35(2): 145-156. doi: 10.11883/1001-1455(2015)02-0145-12

Progress in high-power laser ramp compression of solids

doi: 10.11883/1001-1455(2015)02-0145-12
  • Received Date: 2014-12-26
  • Rev Recd Date: 2015-02-20
  • Publish Date: 2015-03-25
  • Laser-induced stress waves can deliver ramp compression on solid materials with very high strain rates, and it is one of the newly-developed dynamic high-pressure methods in decades. Distinct from the conventional methods, laser ramp compression can reach terapascal pressures smoothly from ambient pressure with a high strain rate 106-109 s-1, but the sample is still in solid state. During the rapid loading process, the thermodynamic state, dynamic characteristics, and in situ microstructure can all be probed by the advanced diagnostic technology. This method is becoming an important and new approach to further investigation on high-pressure physics, equation of state, and rate-dependent material dynamics. In this paper, the history, principle, diagnostics and main breakthroughs of laser ramp compression are reviewed and expected.
  • loading
  • [1]
    Van Kessel C G M, Sigel R. Observation of laser-driven shock waves in solid hydrogen[J]. Physical Review Letters, 1974, 33(17):1020-1023. http://adsabs.harvard.edu/abs/1974PhRvL..33.1020V
    [2]
    Salzmann D, Eliezer S, Krumbein A D, et al. Laser-driven shock-wave propagation in pure and layered targets[J]. Physical Review A, 1983, 28(3):1738-1751. http://adsabs.harvard.edu/abs/1983PhRvA..28.1738S
    [3]
    Cauble R, Phillion D W, Hooveret T J, et al. Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils[J]. Physical Review Letters, 1993, 70(14):2102-2105. http://www.ncbi.nlm.nih.gov/pubmed/10053471
    [4]
    Swift D, Hawreliak J, Braun D, et al. Gigabar material properties experiments on NIF and Omega[C]//Elert M L, Buttler W T, Borg J P, et al. Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Chicago: the American Physical Society, 2011.
    [5]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2):339. http://www.tandfonline.com/servlet/linkout?suffix=CIT0002&dbid=16&doi=10.1080%2F09500340.2015.1075619&key=10.1063%2F1.1578638
    [6]
    Munro D H, Celliers P M, Collins G W, et al. Shock timing technique for the National Ignition Facility[J]. Physics of Plasmas, 2001, 8(5):2245. doi: 10.1063/1.1347037
    [7]
    Shigemori K, Shimizu K, Nakamoto Y, et al. Multiple shock compression of diamond foils with a shaped laser pulse over 1 TPa[J]. Journal of Physics: Conference Series, 2008, 112(4):042023. http://adsabs.harvard.edu/abs/2008JPhCS.112d2023S
    [8]
    Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004, 92(7):075002. http://www.ncbi.nlm.nih.gov/pubmed/14995863
    [9]
    Li Mu, Zhang Hong-ping, Sun Cheng-wei, et al. Numerical analysis of laser-driven reservoir dynamics for shockless loading[J]. Journal of Applied Physics, 2011, 109(9):093525. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5770336
    [10]
    Hawreliak J, Colvin J, Eggert J, et al. Modeling planetary interiors in laser based experiments using shockless compression[J]. Astrophysics and Space Science, 2007, 307(1/2/3):285-289. doi: 10.1007/s10509-007-9385-z
    [11]
    Smith R F, Eggert J H, Jankowski A, et al. Stiff response of aluminum under ultrafast shockless compression to 110 GPa[J]. Physical Review Letters, 2007, 98(6):065701. http://europepmc.org/abstract/MED/17358956
    [12]
    Smith R F, Pollaine S M, Moon S J, et al. High planarity x-ray drive for ultrafast shockless-compression experiments[J]. Physics of Plasmas, 2007, 14(5):057105. doi: 10.1063/1.2712450
    [13]
    Miyanishi K, Ozaki N, Brambrink E, et al. Characterization of laser-driven ultrafast shockless compression using gold targets[J]. Journal of Applied Physics, 2014, 116(4):043521 doi: 10.1063/1.4891802
    [14]
    Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 2010, 6(1):40-43. http://www.nature.com/nphys/journal/v6/n1/abs/nphys1438.html
    [15]
    Spaulding D K, McWilliams R S, Jeanloz R, et al. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions[J]. Physical Review Letter, 2012, 108(6):065701. http://www.ncbi.nlm.nih.gov/pubmed/22401087
    [16]
    McWilliams R S, Spaulding D K, Eggert J H, et al., Phase transformations and metallization of magnesium oxide at high pressure and temperature[J]. Science, 2012, 338(6112):1330-1333. http://www.bionity.com/en/publications/495318/report-phase-transformations-and-metallization-of-magnesium-oxide-at-high-pressure-and-temperature.html
    [17]
    Luo S N, Swift D C, Tierney T E, et al. Laser-induced shock waves in condensed matter: Some techniques and applications[J]. High Pressure Research, 2004, 24(4):409-422. http://adsabs.harvard.edu/abs/2004HPR....24..409L
    [18]
    Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond x-ray diffraction[J]. Physical Review Letters, 2005, 95(7):075502. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2005PhRvL..95g5502K&db_key=PHY&link_type=EJOURNAL
    [19]
    Gotchev O V, Chang P Y, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letter, 2009, 103(21):215004. http://www.ncbi.nlm.nih.gov/pubmed/20366046
    [20]
    Collins G. Physics of dense matter[C]//Proceedings of the 2013 HEDP Summer School. Ohio State University, 2013.
    [21]
    Benuzzi A, Löwer T, Koenig M, et al. Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10-40 Mbar pressure range[J]. Physical Review E, 1996, 54(2):2162-2165. http://www.ncbi.nlm.nih.gov/pubmed/9965306
    [22]
    Cottet F, Romain J P, Fabbro R, et al. Ultrahigh-pressure laser-driven shock-wave experiments at 0.26 μm wavelength[J]. Physical Review Letters, 1984, 52(21):1884-1886. http://adsabs.harvard.edu/abs/1984PhRvL..52.1884C
    [23]
    Trainor R J, Holmes N C, Anderson R A, et al. Shock wave pressure enhancement using short wavelength (0.35 μm) laser irradiation[J]. Applied Physics Letters, 1983, 43(6):542-544. doi: 10.1063/1.94412
    [24]
    Fu Si-zu, Huang Xiu-guang, Ma Min-xun, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to ~2.24 TPa with high precision[J]. Journal of Applied Physics, 2007, 101(4):043517. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4942823
    [25]
    Celliers P M, Collins G W, Silva L B D, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998, 73(10):1320. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4898858
    [26]
    Bradley D K, Eggert J H, Hicks D G, et al. Shock compressing diamond to a conducting fluid[J]. Physical Review Letters, 2004, 93(19):195506. http://www.ncbi.nlm.nih.gov/pubmed/15600850
    [27]
    Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004, 75(11):4916. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5011353
    [28]
    Celliers P M, Collins G W, Hicks D G, et al. Electronic conduction in shock-compressed water[J]. Physics of Plasmas, 2004, 11(8):41-44. doi: 10.1063/1.1758944
    [29]
    Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12(8):082702. doi: 10.1063/1.2009528
    [30]
    Miller J E, Boehly T R, Melchior A, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA[J]. Review of Scientific Instruments, 2007, 78(3):034903. doi: 10.1063/1.2712189
    [31]
    Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Physical Review B, 2009, 79(1):014112. http://adsabs.harvard.edu/abs/2009PhRvB..79a4112H
    [32]
    Jeanloz R, Celliers P M, Collins G W, et al. Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences, 2007, 104(22):9172-9177. doi: 10.1073/pnas.0608170104
    [33]
    Eggert J, Brygoo S, Loubeyre P, et al. Hugoniot data for helium in the ionization regime[J]. Physical Review Letters, 2008, 100(12):124503. http://www.ncbi.nlm.nih.gov/pubmed/18517873
    [34]
    Loubeyre P, Brygoo S, Eggert J, et al. Extended data set for the equation of state of warm dense hydrogen isotopes[J]. Physical Review B, 2012, 86(14):144115. http://adsabs.harvard.edu/abs/2012PhRvB..86n4115L
    [35]
    Brygoo S, Henry E, Loubeyre P, et al. Laser-shock compression of diamond and evidence of a negative-slopemelting curve[J]. Nature Materials, 2007, 6(4): 274-281. http://europepmc.org/abstract/MED/17384637
    [36]
    Knudson M D, Desjarlais M P. Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime[J]. Physical Review B, 2013, 88(18):184107. http://adsabs.harvard.edu/abs/2013PhRvB..88r4107K
    [37]
    Ozaki N, Sano T, Ikoma M, et al. Shock Hugoniot and temperature data for polystyrene obtained with quartz standard[J]. Physics of Plasmas, 2009, 16(6):062702. doi: 10.1063/1.3152287
    [38]
    Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard[J]. Physical Review Letters, 2009, 103(22):225501. http://www.ncbi.nlm.nih.gov/pubmed/20366104
    [39]
    Eggert J H. Materials at extreme compression[R]. Report No. LLNL-CONF-655773, 2014.
    [40]
    孙承纬, 赵剑衡, 王桂吉, 等.磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J].力学进展, 2012, 42(2):206-218. http://d.wanfangdata.com.cn/Periodical/lxjz201202008

    Sun Cheng-wei, Zhao Jian-heng, Wang Gui-ji, et al. Progress in magentic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(2):206-218. http://d.wanfangdata.com.cn/Periodical/lxjz201202008
    [41]
    Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 2014, 511(7509):330-333. http://europepmc.org/abstract/MED/25030170
    [42]
    Cauble R, Reisman D B, Asay J R, et al. Isentropic compression experiments to 1 Mbar using magnetic pressure[J]. Joural of Physics: Condensed Matter, 2002, 14:10821-10824. http://www.ingentaconnect.com/search/article?option1=tka&value1=Isentropic+compressibilities&pageSize=10&index=2
    [43]
    Swift D C, Johnson R P. Quasi-isentropic compression by ablative laser loading: Response of materials to dynamic loading on nanosecond time scales[J]. Physical Review, 2005, 71(6):066401. http://www.ncbi.nlm.nih.gov/pubmed/16089874
    [44]
    Amadou N, Brambrink E, Benuzzi-Mounaix A N, et al. Direct laser-driven ramp compression studies of iron: A first step toward the reproduction of planetary core conditions[J]. High Energy Density Physics, 2013, 9(2):243-246. http://www.sciencedirect.com/science/article/pii/S1574181813000098
    [45]
    Koenig M, Benuzzi-Mounaix A, Brambrink E, et al. Simulating earth core using high energy lasers[J]. High Energy Density Physics, 2000, 6(2):210-214. http://www.sciencedirect.com/science/article/pii/S1574181809001256
    [46]
    Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009, 102(7):075503. http://europepmc.org/abstract/MED/19257686
    [47]
    Xue Quan-xi, Wang Zhe-bin, Jiang Shao-en, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21(7):072709. doi: 10.1063/1.4890851
    [48]
    Wang J, Smith R F, Eggert J H, et al. Ramp compression of iron to 273 GPa[J]. Journal of Applied Physics, 2013, 114(2):023513. doi: 10.1063/1.4813091
    [49]
    Wang J, Smith R F, Coppari F, et al. Ramp compression of magnesium oxide to 234 GPa[J]. Journal of Physics: Conference Series, 2014, 500(6):062002. http://meetings.aps.org/link/BAPS.2013.SHOCK.H5.4
    [50]
    Eggert J. Ramp-compression experiments on tantalum at the NIF and Omega lasers[R]. Report Number: LLNL-CONF-490363, 2011.
    [51]
    Eggert J. Overview of NIF TARDIS shots[R]. Report Number: LLNL-CONF-653683, 2014.
    [52]
    Swift D C, Kraus R G, Loomis E N, et al. Shock formation and the ideal shape of ramp compression waves[J]. Physical Review E, 2008, 78:066115. http://europepmc.org/abstract/MED/19256913
    [53]
    Jin Yun-sheng, Sun Cheng-wei, Zhao Jian-heng, et al. Optimization of loading pressure waveforms for piston driven isentropic compression[J]. Journal of Applied Physics, 2014, 115(24):243506. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6846238&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D6846238
    [54]
    Xue Quan-xi, Wang Zhe-bin, Jiang Shao-en, et al. Characteristic method for isentropic compression simulation[J]. AIP Advances, 2014, 4(5):057127. doi: 10.1063/1.4880039
    [55]
    Shu Hua, Fu Si-zu, Huang Xiu-guang, et al. Plastic behavior of aluminum in high strain rate regime[J]. Journal of Applied Physics, 2014, 116(3):033506. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6857956
    [56]
    Lorenz K T, Edwards M J, Glendinning S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter[J]. Physics of Plasmas, 2005, 12(5):056309. doi: 10.1063/1.1873812?TRACK=RSS
    [57]
    Lorenz K T, Edwards M J, Jankowski A F, et al. High pressure, quasi-isentropic compression experiments on the Omega laser[J]. High Energy Density Physics, 2006, 2(3/4):113-125. http://www.sciencedirect.com/science/article/pii/S1574181806000255
    [58]
    Smith R F, Lorenz K T, Ho D, et al. Graded-density reservoirs for accessing high stress low temperature material states[J]. Astrophysics and Space Science, 2007, 307(1/2/3):269-272. doi: 10.1007/978-1-4020-6055-7_49
    [59]
    Park H, Remington B A, Braun D, et al. Quasi-isentropic material property studies at extreme pressures: From Omega to NIF[J]. Journal of Physics: Conference Series, 2008, 112(4):042024. http://digital.library.unt.edu/ark:/67531/metadc898746/
    [60]
    Yaakobi B, Boehly T R, Sangster T C, et al. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008, 15(6):062703. doi: 10.1063/1.2938749
    [61]
    Swift D C, Hawreliak J, El-Dasher B, et al. Flow stress of V, Mo, Ta, and W on nanosecond time scales[C]//Elert M, Furnish M D, Anderson W W, et al. Shock Compression of Condensed Matter 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Nashville (Tennessee): the American Physical Society, 2009.
    [62]
    Park H S, Remington B A, Becker R C, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Physical Review Letters, 2010, 104(13):135504. http://europepmc.org/abstract/MED/21231088
    [63]
    Park H S, Remington B A, Becker R C, et al. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures[J]. Physics of Plasmas, 2010, 17(5):056314-9. doi: 10.1063/1.3363170
    [64]
    Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth[J]. Physical Review Letters, 2008, 101(6):065701. doi: 10.1103/physrevlett.101.065701
    [65]
    Prisbrey S T, Park H S, Remington B A, et al. Tailored ramp-loading via shock release of stepped-density reservoirs[J]. Physics of Plasmas, 2012, 19(5):056311. doi: 10.1063/1.3699361
    [66]
    Brown J L, Alexander C S, Asay J R, et al. Extracting strength from high pressure ramp-release experiments[J]. Journal of Applied Physics, 2013, 114(22):223518. doi: 10.1063/1.4847535
    [67]
    Brown J L, Alexander C S, Asay J R, et al. Flow strength of tantalum under ramp compression to 250 GPa[J]. Journal of Applied Physics, 2014, 115(4):043530. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6730879
    [68]
    Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4):671-694. http://www.sciencedirect.com/science/article/pii/S0749641908001782
    [69]
    Kalantar D H, Chandler E A, Colvin J D, et al. Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser[J]. Review of Scientific Instruments, 1999, 70(1):629-632.
    [70]
    Loveridge-Smith A, Allen A, Belak J, et al. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales[J]. Physical Review Letters, 2001, 86(11):2349-2352. http://www.ncbi.nlm.nih.gov/pubmed/11289926
    [71]
    Kalantar D H, Allen A M, Gregori F, et al. Laser driven high pressure, high strain-rate materials experiments[C]//AIP Conference Proceedings: Shock Compression of Condensed Matter. Atlanta: the American Physical Society, 2002, 620(1): 615-618.
    [72]
    Kalantar D H, Belak J, Bringa E, et al. High-pressure, high-strain-rate lattice response of shocked materials[J]. Physics of Plasmas, 2003, 10(5):1569-1576. doi: 10.1063/1.1565118
    [73]
    Hawreliak J, Colvin J D, Eggert J H, et al. Analysis of the x-ray diffraction signal for the α-ε transition in shock-compressed iron: Simulation and experiment[J]. Physical Review B, 2006, 74(18):184107. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000074000018184107000001&idtype=cvips&gifs=Yes
    [74]
    Hawreliak J A, Kalantar D H, Stölken J S, et al. High-pressure nanocrystalline structure of a shock-compressed single crystal of iron[J]. Physical Review B, 2008, 78(22):220101. http://adsabs.harvard.edu/abs/2008PhRvB..78v0101H
    [75]
    Rygg J R, Eggert J H, Lazicki A E, et al. Powder diffraction from solids in the terapascal regime[J]. Review of Scientific Instruments, 2012, 83(11):113904. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6365144
    [76]
    Higginbotham A, Patel S, Hawreliak J A, et al. Single photon energy dispersive x-ray diffraction[J]. Review of Scientific Instruments, 2014, 85(3):033906. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6778699
    [77]
    Knudson M D, Desjarlais M P, Dolan D H. Shock-wave exploration of the high-pressure phases of carbon[J]. Science, 2008, 322(19):1822. http://meetings.aps.org/Meeting/SHOCK09/Event/105388
    [78]
    Hicks D G, Boehly T R, Celliers P M, et al. High-precision measurements of the diamond Hugoniot in and above the melt region[J]. Physical Review B, 200, 78(17):174102.
    [79]
    Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Physical Review Letters, 2013, 111(6):065501. http://europepmc.org/abstract/med/23971582
    [80]
    Mallozzi P J, Schwerzel R E, Epstein H M, et al. Fast extended-x-ray-absorption-fine-structure spectroscopy with a laser-produced x-ray pulse[J]. Physical Review A, 1981, 23(2):824-828. http://prola.aps.org/abstract/PRA/v23/i2/p824_1
    [81]
    Meyerhofer D D, Yaakobi B, Marshall F J, et al. EXAFS detection of laser shock heating[J]. Bulletin of the American Physical Society (USA), 2001, 46(8):294. http://www.opticsinfobase.org/abstract.cfm?uri=HFSW-2001-WC2
    [82]
    Yaakobi B, Marshall F J, Boehly T R, et al. Extended x-ray absorption fine-structure experiments with a laser-imploded target as a radiation source[J]. Journal of the Optical Society of America: B, 2003, 20(1):238-245. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000002000001000145000001&idtype=cvips&gifs=Yes
    [83]
    Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended x-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004, 11(5):2688-2695. doi: 10.1063/1.1646673
    [84]
    Yaakobi B, Meyerhofer D D, Boehly T R, et al. Dynamic EXAFS probing of laser-driven shock waves and crystal-phase transformations[J]. Physical Review Letters, 2004, 92(9):095504. http://www.opticsinfobase.org/abstract.cfm?uri=FiO-2004-FTuN4
    [85]
    Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Physical Review Letters, 2005, 95(7):075501. http://europepmc.org/abstract/MED/16196790
    [86]
    Smith R F, Eggert J H, Swift D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron[J]. Journal of Applied Physics, 2013, 114(22):223507. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6708798
    [87]
    Smith R F, Minich R W, Rudd R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon[J]. Physical Review B, 2012, 86(24):245204. doi: 10.1103/PhysRevB.86.245204
    [88]
    Smith R F, Eggert J H, Rudd R E, et al. High strain-rate plastic flow in Al and Fe[J]. Journal of Applied Physics, 2011, 110(12):123515. doi: 10.1063/1.3670001
    [89]
    Coppari F, Smith R F, Eggert J H, et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures[J]. Nature Geoscience, 2013, 6(11):926-929. http://www.nature.com/ngeo/journal/v6/n11/abs/ngeo1948.html
    [90]
    Pang Wei-wei, Zhang Ping, Zhang Guang-cai, et al. Morphology and growth speed of hcp domains during shock-induced phase transition in iron[J]. Nature Scientific Reports, 2014, 4:03628. http://www.nature.com/articles/srep03628
    [91]
    Yu Ji-dong, Wang Wen-jiang, Wu Qiang. Nucleation and growth in shock-induced phase transitions and how they determine wave profile features[J]. Physical Review Letters, 2012, 109(11):115701. http://europepmc.org/abstract/MED/23005645
    [92]
    Smith R F, Minich R W, Rudd R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon[J]. Physical Review B, 2012, 86(24):245204. doi: 10.1103/PhysRevB.86.245204
    [93]
    Jensen B J, Rigg P A, Knudson M D, et al. Dynamic compression of iron single crystals[C]//Furnish M D, Elert M, Russell T P, et al. Shock Compression of Condensed Matter-2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland (USA): American Institute of Physics, 2006, 845(1): 232-235.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (3185) PDF downloads(677) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return