Miao Guang-hong, Ma Hong-hao, Shen Zhao-wu, Yu Yong. Double sided explosive cladding of stainless steel and ordinary carbon steel[J]. Explosion And Shock Waves, 2015, 35(4): 536-540. doi: 10.11883/1001-1455(2015)04-0536-05
Citation: Miao Guang-hong, Ma Hong-hao, Shen Zhao-wu, Yu Yong. Double sided explosive cladding of stainless steel and ordinary carbon steel[J]. Explosion And Shock Waves, 2015, 35(4): 536-540. doi: 10.11883/1001-1455(2015)04-0536-05

Double sided explosive cladding of stainless steel and ordinary carbon steel

doi: 10.11883/1001-1455(2015)04-0536-05
  • Received Date: 2013-12-11
  • Rev Recd Date: 2014-04-03
  • Publish Date: 2015-07-25
  • In order to resolve the current issue about the backward method of charge and low energy efficiency of explosives, a kind of explosive with the structure of honeycomb is used to ensure the quality of the charge and is applied in double sided explosive cladding in which two plates can be combined in one explosion. A double sided explosive caldding experiment of stainless steel plates with the thickness of 3 mm and Q235 steel plates with thickness of 16 mm is carried out by using the explosive with the thickness of 7 mm. The explosive cladding window of the collision velocity is calculated as well as the collision velocity in two groups of the tests. The critical thichness of the explosive is remarkbly reduced with the explosive astricted by the honeycomb structure and the plates. The emulsion explosive with the thickness of 5 mm detonates stably. The result shows that, compared to the existing explosive cladding method, the consumption of explosives by using this method is reduced by 77% in the case of cladding the same number of combination plates. The calculation prefigure explosive cladding of stainless steel/Q235 steel exactly.
  • [1]
    郑远谋.爆炸焊接和爆炸复合材料的原理及应用[M].长沙: 中南大学出版社, 2007: 18-20.
    [2]
    Wang X, Zheng Y Y, Liu H X, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method[J]. Materials and Design, 2012, 35: 210-219. doi: 10.1016/j.matdes.2011.09.047
    [3]
    Chen S Y, Wu Z W, Liu K X, et al. Atomic diffusion behavior in Cu-Al explosive welding process[J]. Journal of Applied Physics, 2013, 113(4): 044901. doi: 10.1063/1.4775788
    [4]
    孙宇新, 康宗维, 付艳恕, 等.多层金属板爆炸焊接研究[J].南京理工大学学报, 2009, 33(5): 596-599. http://d.wanfangdata.com.cn/Periodical/njlgdxxb200905009

    Sun Yu-xin, Kang Zong-wei, Fu Yan-shu, et al. Explosive welding of multilayer metal plates[J]. Journal of Nanjing University of Science and Technology, 2009, 33(5): 596-599. http://d.wanfangdata.com.cn/Periodical/njlgdxxb200905009
    [5]
    宋锦泉.乳化炸药爆轰特性研究[D].北京: 北京科技大学, 2000: 45-47.
    [6]
    Cooper P W. Explosives engineering[M]. New York: Wiley-VCH, 1997: 15-35.
    [7]
    Blazynski T Z. Explosive welding forming and compaction[M]. London: Application Science Publishers Ltd, 1983: 45-50.
    [8]
    Wylie H K, Williams P E G. Further experimental investigation of explosive welding parameters[C]//Proceedings of the 3rd International Conference of the Center for HEF. Denver, CO, USA: University of Denver, 1971: 1-43.
    [9]
    邵丙璜, 张凯.爆炸焊接原理及其工程应用[M].大连: 大连理工大学出版社, 1987: 8-287.
    [10]
    Kennedy J E, Zukas J A, Walters W P. The Gurney model of explosive output for driving metal explosive effects and applications[M]. New York: Springer, 1998: 221-257.
    [11]
    陆明, 吕春绪.乳化炸药配方设计的数学模型研究[J].爆炸与冲击, 2002, 22(4): 338-342. http://www.bzycj.cn/article/id/10173

    Lu M, Lu C X. The mathematical model for the formulation design of emulsion explosive[J]. Explosion and Shock Waves, 2002, 22(4): 338-342. http://www.bzycj.cn/article/id/10173
    [12]
    王耀华.金属板材爆炸焊接研究与实践[M].北京: 国防工业出版社, 2007: 31-38.
  • Cited by

    Periodical cited type(20)

    1. 缪广红,孙志皓,胡昱,马秋月,刘自伟,马宏昊,沈兆武. 铝中间层对TA2/5083爆炸焊接影响的数值模拟. 兵器装备工程学报. 2024(01): 201-207 .
    2. 缪广红,马秋月,胡昱,周大鹏,孙志皓,刘自伟,马宏昊,沈兆武. 铝/不锈钢双金属管爆炸焊接数值模拟. 兵器装备工程学报. 2024(02): 238-245 .
    3. 缪广红,孙志皓,周大鹏,胡昱,马秋月,刘自伟,马宏昊,沈兆武. 316L不锈钢/CK22碳钢爆炸焊接管的数值模拟. 兵器装备工程学报. 2024(03): 217-223 .
    4. 缪广红,朱志强,周大鹏,刘自伟,陈龙,张旭,楚翔宇. 基于不同算法的Ti/SS316爆炸焊接数值模拟研究. 精密成形工程. 2024(04): 53-60 .
    5. 缪广红,马秋月,周大鹏,胡昱,孙志皓,刘自伟,马宏昊,沈兆武. TA2/1060铝双金属管爆炸焊接数值模拟. 安徽理工大学学报(自然科学版). 2024(02): 75-86 .
    6. 缪广红,陈龙,周大鹏,刘自伟,朱志强,张旭,楚翔宇. 铝过渡层对钛/铝爆炸焊接影响的数值模拟. 精密成形工程. 2024(08): 85-90 .
    7. 缪广红,孙志皓,胡昱,马秋月,刘自伟,马宏昊,沈兆武. 焊接参数对不锈钢/铜爆炸焊接影响的数值模拟. 火工品. 2023(03): 61-66 .
    8. 赵宇,缪广红,孙志皓,马秋月,刘自伟. 镁/铝爆炸焊接的数值模拟. 安阳工学院学报. 2023(04): 43-48 .
    9. 缪广红,马秋月,胡昱,孙志皓,刘自伟,马宏昊,沈兆武. 钨铜双金属板热爆炸焊接数值模拟. 兵器装备工程学报. 2023(08): 257-265 .
    10. 缪广红,马秋月,周大鹏,胡昱,孙志皓,刘自伟,马宏昊,沈兆武. 间距对321钢/1230铝双金属管爆炸焊接影响的数值模拟. 力学季刊. 2023(04): 990-1000 .
    11. 荣凯. 负压环境下钢/不锈钢爆炸焊接参数设计. 煤矿爆破. 2022(02): 4-7+18 .
    12. 缪广红,祁俊翔,艾九英,胡昱. 基复板间隙对SUS304不锈钢/Q345R碳钢爆炸焊接影响的数值模拟研究. 黄河科技学院学报. 2022(08): 6-11 .
    13. 胡昱,缪广红,艾九英,祁俊翔,马秋月,孙志皓,马宏昊,沈兆武. TA2箔/Q235钢爆炸焊接数值模拟研究. 兵器装备工程学报. 2022(08): 296-303 .
    14. 缪广红,马雷鸣,李雪交,艾九英,赵文慧,马宏昊,沈兆武. 装药方式对铜/钢爆炸焊接界面波的影响及波形成机理. 高压物理学报. 2020(02): 126-134 .
    15. 缪广红,马雷鸣,吴建强,刘丰茂,陈烨开,马宏昊,沈兆武. 基复板间距对爆炸焊接质量影响的数值模拟. 爆破. 2020(02): 106-114 .
    16. 缪广红,艾九英,马雷鸣,李雪交,马宏昊,沈兆武. 不锈钢/普碳钢双面爆炸复合的数值模拟. 焊接学报. 2020(08): 55-62+100 .
    17. 王丽,张树海,李启发,陈亚红. 不锈钢/钢复合管水压爆炸焊接制造的数值模拟. 材料科学与工艺. 2018(01): 69-74 .
    18. 汪亚飞,谢敬佩,王文焱,王爱琴,李洛利,马窦琴,黄亚博. 热处理工艺对碳钢/不锈钢双液铸造复合板界面显微组织的影响. 金属热处理. 2018(09): 166-170 .
    19. 吕世敬,谢敬佩,王爱琴,毛志平,刘帅洋,田捍卫. 铜铝复合材料研究进展. 特种铸造及有色合金. 2017(08): 844-849 .
    20. 沈兆武,马宏昊,李雪交,余勇,王飞,陈伟,任丽杰,程扬帆,缪广红. 炸药能量的和平利用(Ⅱ). 工程爆破. 2016(01): 30-37 .

    Other cited types(7)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (2867) PDF downloads(503) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return