Citation: | Yu Jian-liang, Gao Yuan, Yan Xing-qing, Gao Wei. Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures[J]. Explosion And Shock Waves, 2015, 35(4): 603-608. doi: 10.11883/1001-1455(2015)04-0603-06 |
[1] |
Lee J H S. The detonation phenomenon[M]. Cambrige, UK: Cambridge University Press, 2008.
|
[2] |
Dupre G, Peraldi O, Lee J H S, et al. Propagation of detonation waves in an acoustic absorbing-walled tube[J]. Progress in Astronautics and Aeronautics, 1988, 114: 248-263. doi: 10.2514/5.9781600865886.0248.0263
|
[3] |
Teodoczyk A, Lee J H S. Detonation attenuation by foams and wire meshes lining the walls[J]. Shock Waves, 1995, 4(4): 225-236. doi: 10.1007/BF01414988
|
[4] |
Raduledscu M I, Lee J H S. The failure mechanism of gaseous detonations: Experiments in porous wall tubes[J]. Combustion and Flame, 2002, 131: 29-46. http://www.sciencedirect.com/science/article/pii/S0010218002003905
|
[5] |
Zeldovich Y B. On the theory of the propagation of detonation in gaseous systems[R]. Soviet Union: Soviet Physics-JETP, 1940.
|
[6] |
Lee J J, Dupre G, Knystautas R, et al. Doppler interferometer study of unstable detonations[J]. Shock Waves, 1995, 5(3): 175-181.
|
[7] |
Camargo A, Ng H D, Chao J, et al. Propagation of near-limit gaseous detonations in small diameter tubes[J]. Shock Waves, 2010, 20(6): 499-508. doi: 10.1007/s00193-010-0253-3
|
[8] |
Radulescu M I. The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes[D]. Montreal, Canada: McGill University, 2003.
|
[9] |
Radulescu M I, Ng H D, Lee J H S, et al. The effect of argon dilution on the stability of acetylene-oxygen detonations[J]. Proceedings of the Combustion Institute, 2002, 29(2): 2825-2831. https://www.sciencedirect.com/science/article/pii/S1540748902803455
|
[10] |
Ng H D, Radulescu M I, Higgins A J, et al. Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics[J]. Combustion Theory and Modeling, 2005, 9: 385-401. doi: 10.1080/13647830500307758
|
[11] |
Chao J, Ng H D, Lee J H S. Detonation limits in thin annular channels[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2349-2354. http://www.sciencedirect.com/science/article/pii/S1540748908003660
|
[12] |
Fay J A. Two-dimensional gaseous detonations: Velocity deficit[J]. Physics of Fluids, 1959, 2(3): 283-289. doi: 10.1063/1.1705924
|
[13] |
Meredith J, Ng H D, Lee J H S. Detonation diffraction from an annular channel[J]. Shock Waves, 2010, 20(6): 449-455. doi: 10.1007/s00193-010-0256-0
|
[14] |
Mcbride B J, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications[R]. NASA, 1996.
|
[15] |
Kee R J, Rupley F M, Millerja. Chemkin-Ⅱ: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[R]. Sandia National Laboratories, 1989.
|
[16] |
The San Diego Mechanism. Chemical-kinetic mechanisms for combustion applications[EB/OL]. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.
|
[17] |
Varatharajan B, Williams F A. Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen diluents systems[J]. Combustion and Flame, 2001, 124(4): 624-645. https://www.sciencedirect.com/science/article/pii/S0010218000002352
|
[1] | Zhao Huanjuan, J.H.S.Lee, Zhang Yinghua, Qian Xinming, Yan Yiran. Effects of boundary conditions on premixed CH4+2O2 detonation characteristics[J]. Explosion And Shock Waves, 2017, 37(2): 201-207. doi: 10.11883/1001-1455(2017)02-0201-07 |
[2] | Chen Yongtao, Hong Renkai, Wang Xiaoyan, Chen Haoyu, Zhang Chongyu, Hu Haibo. Experimental study on dynamic behaviors of metal sample driven by two head-on colliding detonation waves[J]. Explosion And Shock Waves, 2016, 36(2): 177-182. doi: 10.11883/1001-1455(2016)02-0177-06 |
[3] | Duan Jian, Wang Kehui, Zhou Gang, Xue Binjie, Chu Zhe, Li Ming, Dai Xianghui, Geng Baogang. Critical ricochet performance of penetrator impacting concrete targets[J]. Explosion And Shock Waves, 2016, 36(6): 797-802. doi: 10.11883/1001-1455(2016)06-0797-06 |
[4] | Yue Songlin, Wang Mingyang, Zhang Ning, Qiu Yanyu, Wang Derong. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion[J]. Explosion And Shock Waves, 2016, 36(4): 472-482. doi: 10.11883/1001-1455(2016)04-0472-11 |
[5] | Cheng Guan-bing, Li Jun-xian, Li Shu-ming, Qu Hong-chun. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures[J]. Explosion And Shock Waves, 2015, 35(2): 249-254. doi: 10.11883/1001-1455(2015)02-0249-06 |
[6] | Chen Chuang, Wang Xiao-ming, Li Wen-bin, Li Wei-bing, Dong Xiao-liang. Effect of matching of detonation waveform with liner configuration on the rod-like jet formation[J]. Explosion And Shock Waves, 2015, 35(6): 812-819. doi: 10.11883/1001-1455(2015)06-0812-08 |
[7] | Ning Hui-jun, Wang Hao, Wu Tan-hui, Zhang Meng-hua, Zhang Cheng, Ruan Wen-jun. Dynamics simulation of a profiled rod after detonation flying against air resistance[J]. Explosion And Shock Waves, 2015, 35(4): 541-546. doi: 10.11883/1001-1455(2015)04-0541-06 |
[8] | Zhang Xiu-hua, Zhang Chun-wei, Duan Zhong-dong. Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles[J]. Explosion And Shock Waves, 2014, 34(1): 80-86. doi: 10.11883/1001-1455(2014)01-0080-07 |
[9] | Han Zhi-wei, Xie Li-feng, Deng Ji-ping, Xie Yi-chao, Chen Ji-yang. Synthesis of nano-CeO2 powder by detonation method[J]. Explosion And Shock Waves, 2014, 34(1): 106-110. doi: 10.11883/1001-1455(2014)01-0106-05 |
[10] | Feng Hui-ping, Liu Hong-bing, Zuo Xing, Hui Lang-lang. Dynamic response of underground tunnel to explosive loading from penetration weapons in the critical collapse distance[J]. Explosion And Shock Waves, 2014, 34(5): 539-546. doi: 10.11883/1001-1455(2014)05-0539-08 |
[11] | LongRen-rong, FuYue-sheng, ZhangQing-ming. Alocationmethodforunderwaterexplosionsourceanderroranalysis[J]. Explosion And Shock Waves, 2013, 33(2): 181-185. doi: 10.11883/1001-1455(2013)02-0181-05 |
[12] | ZHANG Bo, Lee J H S, BAI Chun-hua. CriticalenergyfordirectinitiationofC2H4-O2 mixture[J]. Explosion And Shock Waves, 2012, 32(2): 113-120. doi: 10.11883/1001-1455(2012)02-0113-08 |
[13] | ZHANGBo, BAIChun-hua. Criticalenergyfordirectinitiationofsphericaldetonations inC2H2-O2-ArandC2H2-N2O-Armixtures[J]. Explosion And Shock Waves, 2012, 32(6): 592-598. doi: 10.11883/1001-1455(2012)06-0592-07 |
[14] | JIA Hu, SHEN Zhao-wu. Underwatersoundcharacteristicsofmetal-claddetonatingcords[J]. Explosion And Shock Waves, 2011, 31(4): 428-432. doi: 10.11883/1001-1455(2011)04-0428-05 |
[15] | LIU Jian-wen, ZHAO Shu-miao, ZHONG Cheng-wen, HAN Wang-chao. CE/SE scheme applied in parallel computation of PDE flow field[J]. Explosion And Shock Waves, 2008, 28(3): 229-225. doi: 10.11883/1001-1455(2008)03-0229-07 |
[16] | KAN Jin-ling, LIU Jia-cong. The blast characteristic of SEFAEEffect of after-burning on blast power[J]. Explosion And Shock Waves, 2006, 26(5): 404-409. doi: 10.11883/1001-1455(2006)05-0404-06 |
[17] | WANG Bao-guo, ZHANG Jing-lin, WANG Zuo-shan, LIU Yu-cun, WANG Jian-hua. Influencing factors of the yield of diamond powder synthesised by detonation and explosion shock[J]. Explosion And Shock Waves, 2006, 26(5): 429-433. doi: 10.11883/1001-1455(2006)05-0429-05 |
[18] | FAN Bao-chun, JIANG Xiao-hai. Secondary explosion induced by vented explosion[J]. Explosion And Shock Waves, 2005, 25(1): 11-16. doi: 10.11883/1001-1455(2005)01-0011-06 |
1. | 韩文虎,张博,王成. 气相爆轰波起爆与传播机理研究进展. 爆炸与冲击. 2021(12): 65-96 . ![]() | |
2. | 赵焕娟,伯玉兰,张英华,严屹然. Ar稀释C_2H_2+2.5O_2预混气高频爆轰的端面结构. 爆炸与冲击. 2018(05): 1121-1129 . ![]() | |
3. | 赵焕娟,John H.S.Lee,张英华,严屹然. 爆轰波三波点擦除烟迹表面积碳机制. 工程科学学报. 2017(03): 335-341 . ![]() | |
4. | 喻健良,管清韦,闫兴清,姚福桐,张东,张师哲. 初始条件对管道内爆轰波传播特性影响研究. 科学技术与工程. 2017(04): 126-131 . ![]() |