Zhong Wei, Tian Zhou, Zhao Yang. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products[J]. Explosion And Shock Waves, 2015, 35(6): 777-784. doi: 10.11883/1001-1455(2015)06-0777-08
Citation: Zhong Wei, Tian Zhou, Zhao Yang. Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products[J]. Explosion And Shock Waves, 2015, 35(6): 777-784. doi: 10.11883/1001-1455(2015)06-0777-08

Calculation of the quasi-static temperature of confined explosions in consideration of the effect of the chemical reactions with detonation products

doi: 10.11883/1001-1455(2015)06-0777-08
  • Received Date: 2014-05-07
  • Rev Recd Date: 2014-08-01
  • Publish Date: 2015-12-10
  • By focusing our concern on the effect of chemical reactions with detonation products, we have done research on the calculation of the quasi-static temperature of confined explosion. On the basis of the energy conservation, considering the chemical kinetic reaction process of the detonation products, the formula and calculating method of quasi-static temperature were proposed. A computation program was designed using C++ language, which was used to calculate the quasi-static temperature of the TNT confined explosion. Calculation results show that chemical reactions of the detonation products play a very important role in the calculation of the quasi-static temperature in confined explosions, and obviously the temperature varies with the charge volume ratios. Ours is an efficient technique to obtain a more accurate quasi-static temperature and calculate some other parameters of confined explosions.
  • [1]
    张守保, 黄日德, 张殿臣, 等.抗偶然爆炸结构设计手册(第1/2卷)[M].北京: 中国人民解放军总参工程兵科研三所, 1998: 26-56.
    [2]
    钟巍.约束爆炸中的化学反应动力学数值计算[D].西安: 西北核技术研究所, 2012.
    [3]
    Kuhl A L, Bell J B, Beckner V E, et al. Gasdynamic model of turbulent combustion in TNT explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2177-2185. http://www.sciencedirect.com/science/article/pii/S154074891000369X
    [4]
    Kuhl A L, Oppenheim A K, Ferguson R E. Thermodynamics of combustion in a confined explosion[R]. Livermore: Lawrence Livermore National Laboratory, 2000: 1-4.
    [5]
    Kuhl A L, Ferguson R E, Oppenheim A K. Combustion of TNT products in a confined explosion[R]. Livermore: Lawrence Livermore National Laboratory, 1999: 67-89.
    [6]
    Oppenheim A K, Kuhl A L. Dynamic features of closed combustion systems[J]. Progress in Energy and Combustion Science, 2000, 26(4/5/6): 533-564. http://www.sciencedirect.com/science/article/pii/S0360128500000058
    [7]
    Oppenheim A K, Kuhl A L. Energy loss from closed combustion systems[J]. Proceedings of the Combustion Institute, 2000, 28(1): 1257-1263. http://www.sciencedirect.com/science/article/pii/S0082078400803380
    [8]
    Kuhl A L, Reichenbach H. Combustion effects in confined explosions[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2291-2298. http://www.sciencedirect.com/science/article/pii/S1540748908000047
    [9]
    钟巍, 田宙.化学反应动力学应用于约束爆炸的研究进展[J].化学工程, 2011, 39(9): 66-70. http://d.wanfangdata.com.cn/Periodical/hxgc201109015

    Zhong Wei, Tian Zhou. Research progress in chemical reaction kinetics applied in confined explosions[J]. Chemical Engineering, 2011, 39(9): 66-70. http://d.wanfangdata.com.cn/Periodical/hxgc201109015
    [10]
    关治, 陆金甫.数值分析基础[M].北京: 高等教育出版社, 2010: 344-345.
    [11]
    印永嘉, 奚正楷, 张树永.物理化学简明教程[M]. 4版.北京: 高等教育出版社, 2009: 24-47.
    [12]
    钟巍, 田宙.多种复杂化学反应动力学统一的数值模拟[J].化学工程, 2011, 39(8): 82-85. http://d.wanfangdata.com.cn/Periodical/hxgc201108020

    Zhong Wei, Tian Zhou. Numerical simulation for some kinds of complex chemical reaction kinetics[J]. Chemical Engineering, 2011, 39(8): 82-85. http://d.wanfangdata.com.cn/Periodical/hxgc201108020
    [13]
    张宝枰, 张庆明, 黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2000: 169.
    [14]
    严清华, 王淑兰, 李岳.大型球形密闭容器内可燃气体爆炸过程的数值模拟[J].天然气工业, 2004, 24(4): 101-103. http://d.wanfangdata.com.cn/Periodical/trqgy200404033

    Yan Qing-hua, Wang Shu-lan, Li Yue. Numerical simulation of flammable gas explosions in large closed spherical vessels[J]. Natural Gas Industry, 2004, 24(4): 101-103. http://d.wanfangdata.com.cn/Periodical/trqgy200404033
    [15]
    毕明树, 尹旺华, 丁信伟, 等.管道内可燃气体爆燃的一维数值模拟[J].天然气工业, 2003, 23(4): 89-92. http://d.wanfangdata.com.cn/Periodical/trqgy200304028

    Bi Ming-shu, Yin Wang-hua, Ding Xin-wei, et al. 1-D Numerical simulation of combustible gas deflagration in pipeline[J]. Natural Gas Industry, 2003, 23(4): 89-92. http://d.wanfangdata.com.cn/Periodical/trqgy200304028
    [16]
    毕明树, 尹旺华, 丁信伟.圆筒形容器内可燃气体爆燃过程的数值模拟[J].天然气工业, 2004, 24(4): 94-96. http://www.cnki.com.cn/Article/CJFDTotal-TRQG200404032.htm

    Bi Ming-shu, Yin Wang-hua, Ding Xin-wei. Numerous simulations of flammable gas deflagrations in cylindrical vessels[J]. Natural Gas Industry, 2004, 24(4): 94-96. http://www.cnki.com.cn/Article/CJFDTotal-TRQG200404032.htm
    [17]
    National Institute of Standards and Technology. NIST Chemical Kinetics Database[DB/OL]. http://kinetics.nist.gov/kinetics/index.jsp.2012-02/2012-04.
  • Cited by

    Periodical cited type(7)

    1. 朱剑雷,韩磊,方展翔,徐豫新. 活性材料与炸药环状复合内爆的准静态压力计算方法. 爆炸与冲击. 2025(04): 60-69 . 本站查看
    2. 徐维铮,吴卫国. 密闭空间内爆炸温度场数值计算及其特性研究. 应用力学学报. 2020(01): 280-285+487-488 .
    3. 徐维铮,吴卫国. 泄压空间内爆炸温度载荷的影响规律研究(一)——装药质量. 应用力学学报. 2020(02): 915-920+952 .
    4. 徐维铮,吴卫国. 泄压空间内爆炸温度载荷的影响规律研究(二)——泄压口大小. 应用力学学报. 2020(03): 1337-1342+1409-1410 .
    5. 徐维铮,吴卫国. 一种约束空间内炸药爆炸温度场数值计算方法及应用. 应用力学学报. 2019(04): 939-944+1003 .
    6. 徐维铮,吴卫国. 考虑后燃烧效应密闭空间内爆炸场数值计算研究. 含能材料. 2019(08): 661-670 .
    7. 徐维铮,吴卫国. 密闭空间内爆炸准静态压力理论计算研究. 中国舰船研究. 2019(05): 124-130 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (3345) PDF downloads(559) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return