Citation: | Wang Jun, Yao Xiong-liang, Guo Jun. Response analysis of shipboard equipment under test on floating shock platform[J]. Explosion And Shock Waves, 2015, 35(6): 832-838. doi: 10.11883/1001-1455(2015)06-0832-07 |
[1] |
王贡献, 胡吉全, 汪玉, 等.舰船设备水下爆炸冲击模拟器机理与仿真[J].华中科技大学学报:自然科学版, 2008, 36(7): 124-128. http://d.wanfangdata.com.cn/Periodical/hzlgdxxb200807033
Wang Gong-xian, Hu Ji-quan, Wang Yu, et al. Numerical modeling and mechanism of a simulator for underwater explosion shock loads on warship equipments[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2008, 36(7): 124-128. http://d.wanfangdata.com.cn/Periodical/hzlgdxxb200807033
|
[2] |
MIL-S-901D, Shock tests, high impact shipboard machinery equipment and systems, requirements[S]. US NAVY, 1989.
|
[3] |
李国华, 李玉节, 张效慈.浮动冲击平台水下爆炸冲击谱测量与分析[J].船舶力学, 2000, 4(2): 51-60. http://www.cqvip.com/Main/Detail.aspx?id=4326902
Li Guo-hua, Li Yu-jie, Zhang Xiao-ci, et al. Shock spectrum measurement and analysis of underwater explosion on a floating shock platform[J]. Journal of Ship Mechanics, 2000, 4(2): 51-60. http://www.cqvip.com/Main/Detail.aspx?id=4326902
|
[4] |
郑长允, 赵鹏远, 赵红光, 等.设备缓冲平台在水下爆炸载荷作用下冲击响应分析[J].科技导报, 2012, 30(18): 37-40. http://www.cnki.com.cn/Article/CJFDTotal-KJDB201218023.htm
Zheng Chang-yun, Zhao Peng-yuan, Zhao Hong-guang, et al. Shock response of buffer platform for equipment in under-water explosion[J]. Science and Technology Review, 2012, 30(18): 37-40. http://www.cnki.com.cn/Article/CJFDTotal-KJDB201218023.htm
|
[5] |
张玮.利用浮动冲击平台考核舰用设备抗冲击能力的数值仿真研究[J].振动与冲击, 2010, 29(12): 60-63. http://jvs.sjtu.edu.cn/CN/abstract/abstract1015.shtml
Zhang Wei. Numerical simulation for shock resistivity of shipboard equipment on floating shock platform[J]. Journal of Vibration and Shock, 2010, 29(12): 60-63. http://jvs.sjtu.edu.cn/CN/abstract/abstract1015.shtml
|
[6] |
Kwon J I, Lee S G, Chung J H. Numerical simulation of MIL-S-901D heavy weight shock test of a double resiliently mounted main engine module[J]. Journal of the Society of Naval Architects of Korea, 2005, 42(5): 499-505. doi: 10.3744/SNAK.2005.42.5.499
|
[7] |
梁卓中, 陈立贤.应用美规MIL-STD-901D标准水中爆震平台进行船舰重装备之抗震能力分析[J].科学与工程技术期刊, 2009, 5(2): 35-50. http://www.airitilibrary.cn/Publication/alDetailedMesh?DocID=18166563-200906-200908050043-200908050043-35-50
Liang Zhuo-zhong, Chen Li-xian. Heavyweight shock-resistant shipboard equipment: A numerical study using an MIL-STD-901D floating shock platform[J]. Journal of Science and Engineering Technology, 2009, 5(2): 35-50. http://www.airitilibrary.cn/Publication/alDetailedMesh?DocID=18166563-200906-200908050043-200908050043-35-50
|
[8] |
杨莉, 杜俭业, 杜志鹏, 等.水下爆炸冲击作用下浮动冲击平台试验安全性[J].噪声与振动控制, 2012(6): 23-25. http://www.cnki.com.cn/Article/CJFDTotal-ZSZK201206007.htm
Yang Li, Du Jian-ye, Du Zhi-peng, et al. Security analysis for floating shock platform test subjected to underwater explosion[J]. Noise and Vibration Control, 2012(6): 23-25. http://www.cnki.com.cn/Article/CJFDTotal-ZSZK201206007.htm
|
[9] |
张爱国.大型舰船水下爆炸结构安全性研究[D].哈尔滨: 哈尔滨工程大学, 2008: 66-70.
|
[10] |
朱石坚, 何琳.船舶机械振动控制[M].北京: 国防工业出版社, 2006: 17-32.
|
[11] |
Zhang A-man, Zhou Wei-xing, Wang Shi-ping, et al. Dynamic response of the non-contact underwater explosions on naval equipment[J]. Marine Structures, 2011, 24(4): 396-411. doi: 10.1016/j.marstruc.2011.05.005
|
[12] |
Li J, Rong J L. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion[J]. European Journal of Mechanics, 2012, 32: 59-69. http://www.sciencedirect.com/science/article/pii/S0997754611000951
|
[1] | WEI Guoxu, CUI Hao, ZHOU Hao, YANG Guitao, GUO Rui. Numerical simulation method for tungsten alloy projectilepenetration into steel target[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0147 |
[2] | WANG Jinneng, GUO Xin, JING Lin, WANG Kaiyun. Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains[J]. Explosion And Shock Waves, 2022, 42(4): 045103. doi: 10.11883/bzycj-2021-0374 |
[3] | QIN Feng, LI Juntao, LI Jinzhu, YANG Yingkun, GAO Lei. Analysis for impact resistance of the high-voltage power module with different fixed modes[J]. Explosion And Shock Waves, 2022, 42(5): 053204. doi: 10.11883/bzycj-2021-0269 |
[4] | HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450 |
[5] | ZHANG Qinbin, CHENG Guihai, XU Zhonghui, LING Yuheng, JIANG Wenju, CHEN Shanjiang. Directional water pressure blasting of Jamuna bridge and its numerical simulation[J]. Explosion And Shock Waves, 2019, 39(6): 065201. doi: 10.11883/bzycj-2018-0089 |
[6] | WANG Zhikai, ZHOU Peng, SUN Bo, YAO Xiongliang, YANG Nana. Influence of bubbles and breaking waves on floating shock platform[J]. Explosion And Shock Waves, 2019, 39(9): 093201. doi: 10.11883/bzycj-2018-0212 |
[7] | Cai Zhengyu, Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yu Jilin. Anti-blast analysis of graded cellular sacrificial cladding[J]. Explosion And Shock Waves, 2017, 37(3): 396-404. doi: 10.11883/1001-1455(2017)03-0396-09 |
[8] | He Qiu-mei, Li Xiao-jun, Li Ya-qi, Zhou Bo-chang, Zhang Jiang-wei, Fu Lei. Influence of near-fault velocity pulse on the seismic response of high temperature gas cooled reactor nuclear power plant[J]. Explosion And Shock Waves, 2015, 35(6): 799-806. doi: 10.11883/1001-1455(2015)06-0799-08 |
[9] | Jiang Nan, Xu Quan-jun, Long Yuan, Liao Yu, Lin Wei. Expansive pressure characteristic and borehole parameter analysis on large scale borehole soundless cracking[J]. Explosion And Shock Waves, 2015, 35(4): 467-472. doi: 10.11883/1001-1455(2015)04-0467-06 |
[10] | Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong. Study on the model of hot-spot ignition based on friction generated heat on the microcrack face[J]. Explosion And Shock Waves, 2015, 35(6): 807-811. doi: 10.11883/1001-1455(2015)06-0807-05 |
[11] | Wang Jun, Yao Xiong-liang, Yang Di. Impact analysis of shock environment from floating shock platform on equipment response[J]. Explosion And Shock Waves, 2015, 35(2): 236-242. doi: 10.11883/1001-1455(2015)02-0236-07 |
[12] | Li Yan-yan, Zheng Zhi-jun, Yu Ji-lin, Wang Chang-feng. Finite element analysis on deformation modes of closed-cell metallic foam[J]. Explosion And Shock Waves, 2014, 34(4): 464-470. doi: 10.11883/1001-1455(2014)04-0464-07 |
[13] | HuWen-jun, ChenCheng-jun, ZhangFang-ju, LiuZhan-fang, HuangXi-cheng, XieRuo-ze. Experimentandnumericalsimulationonpenetration ofpolycarbonateprojectileintotarge[J]. Explosion And Shock Waves, 2013, 33(6): 574-580. doi: 10.11883/1001-1455(2013)06-0574-07 |
[14] | ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06 |
[15] | JIANG Dong, LI Yong-chi. Numericalsimulationofadiabaticshear inbluntnoseprojectilepluggingtarget[J]. Explosion And Shock Waves, 2011, 31(1): 1-5. doi: 10.11883/1001-1455(2011)01-0001-05 |
[16] | ZHANG Xiao-tian, JIA Guang-hui, HUANG Hai. Simulationofhypervelocity-impactdebrisclouds usingaLagrangeFEM withnodeseparation[J]. Explosion And Shock Waves, 2010, 30(5): 499-504. doi: 10.11883/1001-1455(2010)05-0499-06 |
[17] | CHEN Er-yun, MA Da-wei, LE Gui-gao, ZHAO Gai-ping, ZHU Sun-ke. Diffraction, reflection and focusing of toroidal shock waves[J]. Explosion And Shock Waves, 2009, 29(2): 177-181. doi: 10.11883/1001-1455(2009)02-0177-05 |
[18] | WANG Yu-xin, CHEN Zhen, SUN Ming. Simulation of explosion and shock involving multiple materials based on the material point method[J]. Explosion And Shock Waves, 2008, 28(2): 154-160. doi: 10.11883/1001-1455(2008)02-0154-07 |
[19] | LU Hong-biao, ZHOU Zao-sheng, YAN Dong-jin, DAI You-bin, HE Hu-cheng. Development on shocking table for blast explosions[J]. Explosion And Shock Waves, 2005, 25(3): 276-280. doi: 10.11883/1001-1455(2005)03-0276-05 |
[20] | REN Bo, WANG Cheng. Parallel impact/penetration finite element method simulation techniques[J]. Explosion And Shock Waves, 2005, 25(3): 260-264. doi: 10.11883/1001-1455(2005)03-0260-05 |