Volume 36 Issue 2
Oct.  2018
Turn off MathJax
Article Contents
Yang Fengbo, Ma Dawei, Xue Xinyu, Cui Longfei. Thermal shock mechanism and thermal environment influencing factors of a new concentric canister launcher[J]. Explosion And Shock Waves, 2016, 36(2): 153-160. doi: 10.11883/1001-1455(2016)02-0153-08
Citation: Yang Fengbo, Ma Dawei, Xue Xinyu, Cui Longfei. Thermal shock mechanism and thermal environment influencing factors of a new concentric canister launcher[J]. Explosion And Shock Waves, 2016, 36(2): 153-160. doi: 10.11883/1001-1455(2016)02-0153-08

Thermal shock mechanism and thermal environment influencing factors of a new concentric canister launcher

doi: 10.11883/1001-1455(2016)02-0153-08
  • Received Date: 2014-08-13
  • Rev Recd Date: 2015-11-10
  • Publish Date: 2016-03-25
  • In this work, by adopting dynamic mesh technology along with the spring based smoothing method and the laying based zone moving method, we have numerically solved the axisymmetric N-S equations, analyzed the flow field mechanism and thermal shock characteristics, identified the thermal environment evaluating and influencing factors that are essential for dealing with problems in decision making of the new land-based concentric canister launcher (CCL) under the high-speed thermal shock load condition, and determined the evaluation index of the thermal environment. The mathematic model was established by optimal Latin hypercube design and radial basis function neural network (RBFNN), thus greatly facilitating the automatic modeling and compensating for the large amount of calculation for CFD. The intelligent decision research of the influencing factors for the missile thermal environment was performed using the RBFNN training method. The numerical results show that the thermal environment of the internal canister and the external cylinder are improved by the cryogenic gas coming from the cylinder port; the approximate model is accurate enough to meet the engineering standards required; the influencing factors for the missile thermal environment load are, according to their ranking from high to low, are the following: The diameter of the cylinder bottom baffle plate, the length of the cylinder bottom baffle plate, the height of the deflector. The research of the influencing factors will lay a solid foundation for the multidisciplinary optimization of the thermal environment.
  • loading
  • [1]
    杨风波, 马大为, 杨帆.高压弹射装置内弹道建模与计算[J].兵工学报, 2013, 34(5):527-534. http://d.old.wanfangdata.com.cn/Periodical/bgxb201305003

    Yang Fengbo, Ma Dawei, Yang Fan. Interior ballistics modeling and calculation of high-pressure ejection device[J]. Acta Armamentarii, 2013, 34(5):527-534. http://d.old.wanfangdata.com.cn/Periodical/bgxb201305003
    [2]
    张仁军, 鲍福延.两种不同注水方式的燃气蒸汽式发射系统内弹道性能比较[J].固体火箭技术, 2005, 28(1):5-9. doi: 10.3969/j.issn.1006-2793.2005.01.002

    Zhang Renjun, Bao Fuyan. Comparison of internal ballistic properties between gas and steam launching system in two different modes of water injection[J]. Journal of Solid Rocket Technology, 2005, 28(1):5-9. doi: 10.3969/j.issn.1006-2793.2005.01.002
    [3]
    邵立武, 姜毅, 马艳丽, 等.新型舰载同心筒发射过程流场研究[J].导弹与航天运载技术, 2011(4):54-58. doi: 10.3969/j.issn.1004-7182.2011.04.013

    Shao Liwu, Jiang Yi, Ma Yanli, et al. Launching process of the new type ship-borne concentric canister launcher[J]. Missiles and Space Vehicles, 2011(4):54-58. doi: 10.3969/j.issn.1004-7182.2011.04.013
    [4]
    赵汝岩, 黄志勇, 周红梅.潜载导弹近筒口点火数值仿真[J].固体火箭技术, 2012, 35(2):161-165. doi: 10.3969/j.issn.1006-2793.2012.02.005

    Zhao Ruyan, Huang Zhiyong, Zhou Hongmei. Numerical research on the underwater igniting process of submarine-based missile[J]. Journal of Solid Rocket Technology, 2012, 35(2):161-165. doi: 10.3969/j.issn.1006-2793.2012.02.005
    [5]
    姜毅, 郝继光, 刘群.同心筒垂直发射装置排导燃气流的改进[J].北京理工大学学报, 2007, 27(2):95-98. doi: 10.3969/j.issn.1001-0645.2007.02.001

    Jiang Yi, Hao Jiguang, Liu Qun. Improvement measures of exhausting the jet in the concentric vertical launching equipment[J]. Transactions of Beijing Institute of Technology, 2007, 27(2):95-98. doi: 10.3969/j.issn.1001-0645.2007.02.001
    [6]
    姜毅, 郝继光, 傅德彬, 等.新型"引射同心筒"垂直发射装置理论及试验研究[J].宇航学报, 2008, 29(1):236-241. doi: 10.3873/j.issn.1000-1328.2008.01.042

    Jiang Yi, Hao Jiguang, Fu Debin, et al. Study on theory and test of a new type concentric canister with jet flow vertical launcher[J]. Journal of Astronautics, 2008, 29(1):236-241. doi: 10.3873/j.issn.1000-1328.2008.01.042
    [7]
    马艳丽, 姜毅, 王伟臣, 等.湿式同心筒自力垂直热发射技术降温效果研究[J].弹道学报, 2010, 22(4):89-93. http://d.old.wanfangdata.com.cn/Periodical/ddxb201004022

    Ma Yanli, Jiang Yi, Wang Weichen, et al. Research on launching process cooling effect of wet concentric canister launcher[J]. Journal of Ballistics, 2010, 22(4):89-93. http://d.old.wanfangdata.com.cn/Periodical/ddxb201004022
    [8]
    于勇, 母云涛.新型变截面同心筒发射装置及其热环境气动原理研究[J].宇航学报, 2013, 34(9):1281-1287. doi: 10.3873/j.issn.1000-1328.2013.09.015

    Yu Yong, Mu Yuntao. Configuration and gas dynamic dynamics analysis for a new variable cross-section concentric canister launcher[J]. Journal of Astronautics, 2013, 34(9):1281-1287. doi: 10.3873/j.issn.1000-1328.2013.09.015
    [9]
    段宝福, 张猛, 李俊猛, 等.逐孔起爆震动参数预报的BP神经网络模型[J].爆炸与冲击, 2010, 30(4):401-406. doi: 10.11883/1001-1455(2010)04-0401-06

    Duan Baofu, Zhang Meng, Li Junmeng, et al. A BP neural network model for forecasting of vibration parameters from hole-by-hole detonation[J]. Explosion and Shock Waves, 2010, 30(4):401-406. doi: 10.11883/1001-1455(2010)04-0401-06
    [10]
    史秀志, 林大能, 陈寿如.基于粗糙集模糊神经网络的爆破振动危害预测[J].爆炸与冲击, 2009, 29(4):401-407. doi: 10.3321/j.issn:1001-1455.2009.04.012

    Shi Xiuzhi, Lin Daneng, Chen Shouru. Blasting-vibration-induced damage prediction by rough set-based fuzzy-neural network[J]. Explosion and Shock Waves, 2009, 29(4):401-407. doi: 10.3321/j.issn:1001-1455.2009.04.012
    [11]
    Versteeg H K, Malalasekera W. An introduction to computational fluid dynamic: The finite volume method[M]. 2nd Edition. Prentice Hall, 2007.
    [12]
    王志健, 杜佳佳.动网格在固体火箭发动机非稳态工作过程中的应用[J].固体火箭技术, 2008, 31(4):350-353. doi: 10.3969/j.issn.1006-2793.2008.04.011

    Wang Zhijian, Du Jiajia. Application of dynamic mesh to unsteady burning of solid rocket motor[J]. Journal of Solid Rocket Technology, 2008, 31(4):350-353. doi: 10.3969/j.issn.1006-2793.2008.04.011
    [13]
    杨风波, 马大为, 任杰, 等.新型车载同心筒流场机理与热环境研究[J].固体火箭技术, 2014, 37(3):301-306. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201403004

    Yang Fengbo, Ma Dawei, Ren Jie, et al. Research on flow field mechanism and thermal environment of a new vehicle-carried concentric canister launcher[J]. Journal of Solid Rocket Technology, 2014, 37(3):301-306. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201403004
    [14]
    Orszag S A, Yakhot V, Flanney W S. Renormalization group modeling and turbulence, in international conference on near-wall turbulent flows[C]//Proceedings of the International Symposium on Mathematical Modeling of Turbulent Flows. Tokyo, Japan, 1995.
    [15]
    Agrell J, White R A. An experimental investigation of supersonic axisymmetric flow over boattails containing a centered propulsive jet: AU-913[R]. FFA Technical Note, 1974.
    [16]
    李宗瑞.物料加热与干燥过程的反向研究: 传热与传质过程的最优化[D].沈阳: 东北大学, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (4718) PDF downloads(637) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return