Citation: | Liu Junjie, Wan Zhengquan, Qi Enrong. Dynamic response of double ring-stiffened cylindrical shell structure collided by multiple bodies[J]. Explosion And Shock Waves, 2016, 36(2): 210-217. doi: 10.11883/1001-1455(2016)02-0210-08 |
[1] |
池建文.潜艇海上碰撞:惊险却难免[J].现代舰船, 2001(4):18-19. http://d.old.wanfangdata.com.cn/Conference/3205355
|
[2] |
梅志远.基于MSC Dytran的潜艇结构撞击强度分析[J].计算机辅助工程, 2006, 15(S1):71-74. http://d.old.wanfangdata.com.cn/Periodical/jsjfzgc2006z1025
Mei Zhiyuan. Numerical analysis based on MSC Dytran collision strength of submarine structure[J]. Computer Aided Engineering, 2006, 15(S1):71-74. http://d.old.wanfangdata.com.cn/Periodical/jsjfzgc2006z1025
|
[3] |
梅志远, 李卓.单双壳体典型结构耐撞性模型试验研究及仿真分析[J].船舶力学, 2011, 15(11):1248-1249. doi: 10.3969/j.issn.1007-7294.2011.11.008
Mei Zhiyuan, Li Zhuo. Experimental and numerical research for impact-resistance characteristic of double or single shell structure in water[J]. Journal of Ship Mechanics, 2011, 15(11):1248-1249. doi: 10.3969/j.issn.1007-7294.2011.11.008
|
[4] |
朱新阳, 梅志远, 吴梵.潜艇典型结构在撞击载荷作用下动态响应的试验研究[J].船海工程, 2009, 38(4):88-91. http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200904024.htm
Zhu Xinyang, Mei Zhiyuan, Wu Fan. Research on dynamic response test of submarine typical structure unit's under impact load[J]. Ship & Ocean Engineering, 2009, 38(4):88-91. http://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200904024.htm
|
[5] |
Kim Y W, Lee Y S. Transient analysis of ring-stiffened composite cylindrical shells with both edges clamped[J]. Journal of Sound and Vibration, 2002, 252(1):1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4cc72cab6d6b11bdced3d0d12aec53d1
|
[6] |
孙清磊, 刘令, 吴梵.撞头形状对环肋圆柱壳水下碰撞特性的影响[J].船海工程, 2012, 41(4):98-101, 109. doi: 10.3963/j.issn.1671-7953.2012.04.026
Sun Qinglei, Liu Ling, Wu Fan. Underwater collision properties of ring-stiffened cylinder effected by different shape of strikes[J]. Ship & Ocean Engineering, 2012, 41(4):98-101, 109. doi: 10.3963/j.issn.1671-7953.2012.04.026
|
[7] |
浦发.穿甲原理的新探索[J].弹箭与制导学报, 2000(4):1-4. doi: 10.3969/j.issn.1673-9728.2000.04.001
Pu Fa. A new study on the theory of penetration[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2000(4):1-4. doi: 10.3969/j.issn.1673-9728.2000.04.001
|
[8] |
Liu Junjie, Wan Zhengquan, Qi Enrong, et al. Numerical simulations of the damage process of double cylindrical shell structure subjected to an impact[J]. Journal of Ship Mechanics, 2010, 14(6):660-669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cblx201006010
|
[9] |
王自力.船舶碰撞损伤机理与结构耐撞性研究[D].上海: 上海交通大学, 2000. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y370337
|
[10] |
MSC Software Corporation. MSC.Patran user's guide[M]. MacNeal-Schwendler Corporation, 1998.
|
[11] |
王自力, 顾永宁.船舶碰撞动力学过程的数值仿真研究[J].爆炸与冲击, 2001, 21(1):29-34. doi: 10.3321/j.issn:1001-1455.2001.01.007
Wang Zili, Gu Yongning. Numerical simulations of ship/ship collisions[J]. Explosion and Shock Waves, 2001, 21(1):29-34. doi: 10.3321/j.issn:1001-1455.2001.01.007
|
[1] | ZHAO Haochuan, FENG Xiaowei, LIU Yaolu, LI Tianyu, HU Yanhui, TAN Xiaojun, NIE Yuan. Damage characteristics of T800 carbon fiber plates subject to typical hail impact loads[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0453 |
[2] | SUN He, YAN Ming, DU Zhipeng, ZHANG Lei. Distribution characteristics of underwater explosion damage to ships[J]. Explosion And Shock Waves, 2024, 44(6): 065102. doi: 10.11883/bzycj-2023-0370 |
[3] | WU Xingxing, ZHANG Lunping, ZOU Haoyang, ZHANG Nu, WANG Haikun, LIU Jianhu. A calculation method for ship structure damage under cabin explosion[J]. Explosion And Shock Waves, 2024, 44(3): 031405. doi: 10.11883/bzycj-2023-0289 |
[4] | LOU Xiaoming, CHEN Shiwei, LI Guangbin, NIU Mingyuan, LIN Rizong, YAO Bingjin. Stage characteristics of impact pressure of blasthole-walls with different diameters under coupled charge conditions[J]. Explosion And Shock Waves, 2023, 43(8): 085201. doi: 10.11883/bzycj-2022-0547 |
[5] | YANG Tengteng, GONG Li, DONG Zhouquan, DU Yunfei, CUI Yue. Dynamic response of flowing ice colliding with a sluice pier under hydrodynamic action[J]. Explosion And Shock Waves, 2023, 43(12): 123901. doi: 10.11883/bzycj-2023-0113 |
[6] | TAN Xiaojun, FENG Xiaowei, HU Yanhui, XIE Ruoze, YANG Shiquan, BAI Yunshan. Experimental investigation on characteristics of layered ice spheres under high-velocity impact[J]. Explosion And Shock Waves, 2020, 40(11): 113301. doi: 10.11883/bzycj-2020-0047 |
[7] | XU Gancheng, YUAN Weize, GU Jincai, ZHANG Xiangyang. Anti-detonation property of reinforcement rock[J]. Explosion And Shock Waves, 2019, 39(5): 052203. doi: 10.11883/bzycj-2018-0203 |
[8] | SONG Ge, LONG Yuan, ZHONG Mingshou, WANG min, WU Jianyu. Similarity relations of underwater explosion in centrifuge and pressurizing vessels[J]. Explosion And Shock Waves, 2019, 39(2): 024102. doi: 10.11883/bzycj-2017-0321 |
[9] | Liu Hongyan, Yang Yan, Li Junfeng, Zhang Limin. Dynamic damage constitutive model for rock mass with non-persistent joints based on the TCK model[J]. Explosion And Shock Waves, 2016, 36(3): 319-325. doi: 10.11883/1001-1455(2016)03-0319-07 |
[10] | Liu Jingbo, Han Pengfei, Zheng Wenkai, Lu Xinzheng, Lin Li. Numerical investigation of shield building for nuclear power plant subjected to commercial aircraft impact[J]. Explosion And Shock Waves, 2016, 36(3): 391-399. doi: 10.11883/1001-1455(2016)03-0391-09 |
[11] | Liu Jian-gang, Li Yu-long, Suo Tao, Cui Hao. Numerical simulation of high velocity impactof composite T-joint by hailstone[J]. Explosion And Shock Waves, 2014, 34(4): 451-456. doi: 10.11883/1001-1455(2014)04-0451-06 |
[12] | LuYu-bin, WuHai-jun, ZhaoLong-mao. A micro-mechanicalmodelfordynamictensilestrength ofconcrete-likematerial[J]. Explosion And Shock Waves, 2013, 33(3): 275-282. doi: 10.11883/1001-1455(2013)03-0275-07 |
[13] | WangChang-feng, ZhengZhi-jun, YuJi-lin. Dynamiccrushingmodelsforafoamrodstrikingarigidwal[J]. Explosion And Shock Waves, 2013, 33(6): 587-593. doi: 10.11883/1001-1455(2013)06-0587-07 |
[14] | TAO Jun-lin, LI Kui. Athermo-viscoelasticrate-dependentconstitutiveequation forcementmortarwithdamage[J]. Explosion And Shock Waves, 2011, 31(3): 268-273. doi: 10.11883/1001-1455(2011)03-0268-06 |
[15] | JIANG Da-zhi, GUO Yang, LI Chang-liang, XIAO Jia-yu. Experimental investigation on response of two-core sandwich composite structures under transverse impact[J]. Explosion And Shock Waves, 2009, 29(6): 590-595. doi: 10.11883/1001-1455(2009)06-0590-06 |
[16] | CHEN Cheng-jun, XIE Ruo-ze, ZHANG Fang-ju, ZHAO Ya-bin, LU Zi-xing. An application of Taylor impact experiment to study mechanical behaviors of an aluminum-alloy foam[J]. Explosion And Shock Waves, 2008, 28(2): 166-171. doi: 10.11883/1001-1455(2008)02-0166-06 |
[17] | SHANG Bing, SHENG Jing, WANG Bao-zhen, HU Shi-sheng. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion And Shock Waves, 2008, 28(6): 527-531. doi: 10.11883/1001-1455(2008)06-0527-05 |
[18] | DONG Jie, LI Yong-chi, CHEN Xue-dong. A phenomenological damage model of microvoids and its application[J]. Explosion And Shock Waves, 2008, 28(5): 443-447. doi: 10.11883/1001-1455(2008)05-0443-05 |
[19] | ZHANG Wei, MA Wen-lai, GUAN Gong-shun, PANG Bao-jun. Numerical simulation of non-spherical projectiles hypervelocity impact on spacecraft shield configuration[J]. Explosion And Shock Waves, 2007, 27(3): 240-245. doi: 10.11883/1001-1455(2007)03-0240-06 |
[20] | LI Hai-wang, GUO Ke, WEI Jian-wei, QIN Dong-qi. The dynamic response of a single-layer reticulated shell to drop hammer impact[J]. Explosion And Shock Waves, 2006, 26(1): 39-45. doi: 10.11883/1001-1455(2006)01-0039-07 |