Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng. Compressive deformation behaviors of beryllium[J]. Explosion And Shock Waves, 2016, 36(2): 285-288. doi: 10.11883/1001-1455(2016)02-0285-04
Citation: Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng. Compressive deformation behaviors of beryllium[J]. Explosion And Shock Waves, 2016, 36(2): 285-288. doi: 10.11883/1001-1455(2016)02-0285-04

Compressive deformation behaviors of beryllium

doi: 10.11883/1001-1455(2016)02-0285-04
  • Received Date: 2014-12-03
  • Rev Recd Date: 2015-06-09
  • Publish Date: 2016-03-25
  • The quasi-static and dynamic compression behavior of beryllium was investigated by using MTS and SHPB at different temperatures. Investigated results show that beryllium exhibits excellent plasticity under compression. Sensitive to the changes in temperature and strain rate, the yield point and flow stress of beryllium have an marked tendency to increase with the increase of the strain rate, and to decrease gradually with the rise of temperatures. At the same time, the work hardening behavior of beryllium exhibits a piecewise hardening feature as the strain increases at room temperature, and tends to become smooth as the temperature rises. Finally, a modified Johnson-Cook constitutive model was developed to predict the deformation behavior of beryllium over a wide range of temperatures and strain rates. The calculation results of the model are in good agreement with those achieved from the experiment.
  • [1]
    王零森, 钟景明, 付晓旭, 等.晶粒尺寸对等静压铍材力学性能的影响[J].中南大学学报, 1999, 30(4):395-397. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD904.016.htm

    Wang Lingsen, Zhong Jingming, Fu Xiaoxu, et al. The influence of grain size on mechanical properties of isostatically pressed beryllium materials[J]. Journal of Central South University: Science and Technology, 1999, 30(4):395-397. http://www.cnki.com.cn/Article/CJFDTotal-ZNGD904.016.htm
    [2]
    许德美, 李峰, 王东新, 等.组织缺陷对金属铍室温断裂行为的影响规律研究[J].稀有金属, 2010, 34(6):844-849. http://d.old.wanfangdata.com.cn/Periodical/xyjs201006011

    Xu Demei, Li Feng, Wang Dongxin, et al. Effects of microstructure defects on fracture behavior of beryllium metal at room temperature[J]. Chinese Journal of Rare Metals, 2010, 34(6):844-849. http://d.old.wanfangdata.com.cn/Periodical/xyjs201006011
    [3]
    许德美, 秦高梧, 李峰, 等.BeO杂质形态与分布对金属铍力学性能的影响[J].中国有色金属学报, 2011, 21(4):769-776. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201104010

    Xu Demei, Qin Gaowu, Li Feng, et al. Effects of morphology and distribution of BeO impurity on mechanical properties of metal beryllium[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4):769-776. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201104010
    [4]
    Blumenthal W R, Abeln S P, Cannon D D, et al. Influence of strain rate and temperature on the mechanical behavior of beryllium[C]//The Tenth American Physical Society Topical Conference on Shock Compression of Condensed Matter. 1998.
    [5]
    Blumenthal W R, Abeln S P, Mataya M C, et al. Dynamic behavior of beryllium as a function of texture[R]. Los Alamos National Laboratory, 1999.
    [6]
    Brown D W, Beyerlein I J, Sisneros TA, et al. Role of twinning and slip during compressive deformation of beryllium as a function of strain rate[J]. International Journal of Plasticity, 2012, 29(2):120-135. http://cn.bing.com/academic/profile?id=e7fbe59673306bd7d6e2247e799cfe15&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    Brown D W, Almer J D, Clausen B, et al. Twinning and de-twinning in beryllium during strain path changes[J]. Materials Science and Engineering: A, 2013, 559(1):29-39. http://cn.bing.com/academic/profile?id=e23a091fee5d583904619d78b5a31bcd&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Sisneros T A, Brown D W, Clausen B, et al. Influence of strain rate on mechanical properties and deformation texture of hot-pressed and rolled beryllium[J]. Materials Science and Engineering: A, 2010, 527(20):5181-5188. doi: 10.1016/j.msea.2010.04.035
    [9]
    Nicholas T. Mechanical properties of structural grades of beryllium at high strain rates[R]. Air Force Materials Laboratory, Wright-Patterson Air Force Base, 1975.
    [10]
    Breithaupt D. Dynamic compressive strain rate tests on two types of beryllium[R]. Lawrence Livermore National Laboratory, 1983.
    [11]
    张鹏程, 田黎明.车削加工对铍组织与性能的损伤[J].稀有金属, 2001, 25(2):90-93. http://www.cnki.com.cn/Article/CJFDTotal-ZXJS200102002.htm

    Zhang Pengcheng, Tian Liming. Effects of lathe on microstructure and mechanical properties of beryllium[J]. Chinese Journal of Rare Metals, 2001, 25(2):90-93. http://www.cnki.com.cn/Article/CJFDTotal-ZXJS200102002.htm
  • Cited by

    Periodical cited type(5)

    1. 郑莉芳,刘新宇,鲍帅平,张健康,钟景明,丁玉龙. 稀有金属铍的性能研究进展. 稀有金属. 2023(02): 292-302 .
    2. 叶想平,南小龙,段志伟,俞宇颖,蔡灵仓,刘仓理. 样品粗糙度对材料SHPB动态压缩性能的影响. 爆炸与冲击. 2022(01): 53-59 . 本站查看
    3. 曹金荣. 热压铍材静-动态变形行为及其本构方程. 有色金属加工. 2019(01): 31-33+56 .
    4. 杨祖坤,张昌盛,庞蓓蓓,洪艳艳,莫方杰,刘昭,孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响. 金属学报. 2018(08): 1150-1156 .
    5. 雷仙. 铍小球压缩力学性质的数值模拟研究. 信息通信. 2016(07): 15-17 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (6229) PDF downloads(686) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return