TIAN Jie, HU Shi-sheng. Investigation on mechanical properties of the composites of aluminum foam containing silicone rubber[J]. Explosion And Shock Waves, 2005, 25(5): 400-404. doi: 10.11883/1001-1455(2005)05-0400-05
Citation: Zhou Jie, Xu Shengli. SPH simulation on the behaviors of projectile water entry[J]. Explosion And Shock Waves, 2016, 36(3): 326-332. doi: 10.11883/1001-1455(2016)03-0326-07

SPH simulation on the behaviors of projectile water entry

doi: 10.11883/1001-1455(2016)03-0326-07
  • Received Date: 2014-09-22
  • Rev Recd Date: 2014-12-05
  • Publish Date: 2016-05-25
  • In this work we investigated the dynamic behaviors of the projectile water entry using the SPH method. We developed our own SPH program based on the N-S equation of the Lagrange form and established a calculation model for the projectile water entry and, with corresponding material parameters and equation of state given, studied the influence of such factors as projectile shape, velocity and angle into the water on the process of the projectile water entry. The simulation results show that the formation and the development of the cavitation bubble are mainly determined by the projectile's state of motion: the more stable the projectile's trajectory, the smaller its drag coefficient, and the greater its sustained velocity. It is found that the SPH method has a high self-adaptability, for which it is applicable for studying the problems related with fluid-structure interaction occurring during the process of the projectile water entry.
  • [1]
    Putilin S I. Some features of dynamics of supercavitating models[J]. Applied Hydromechanics, 2000, 2(74):65-74.
    [2]
    Knapp R T, Daily J W, Hammitt F G. Cavitation[M]. NewYork: McGraw-Hill, 1970.
    [3]
    Franc J-P, Michel J-M. Fundamentals of cavitation[M]. The Netherlands: Kluwer Academic Publishers, 2004
    [4]
    曹伟, 王聪, 魏英杰, 等.自然超空泡形态特性的射弹试验研究[J].工程力学, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031

    Cao Wei, Wang Cong, Wei Yingjie, et al. High-speed projectile experimental investigations on the characteristics of natural supercavitation[J]. Engineering Mechanics, 2006, 23(12):175-187. doi: 10.3969/j.issn.1000-4750.2006.12.031
    [5]
    易文俊, 王中原, 熊天红, 等.水下高速射弹超空泡减阻特性研究[J].弹道学报, 2008, 20(4):1-4. http://d.old.wanfangdata.com.cn/Periodical/ddxb200804001

    Yi Wenjun, Wang Zhongyuan, Xiong Tianhong, et al. Research on drag reduction characteristics of a underwater high-speed supercavitation projectile[J]. Journal of Ballistics, 2008, 20(4): 1-4. http://d.old.wanfangdata.com.cn/Periodical/ddxb200804001
    [6]
    安伟光, 蒋运华, 安海.运动体高速入水非定常过程研究[J].工程力学, 2011, 28(3):251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103039.htm

    An Weiguang, Jiang Yunhua, An Hai. The unsteady water entry process study of high-speed vehicle[J]. Engineering Mechanics, 2011, 28(3):251-256. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103039.htm
    [7]
    Chen J K, Beraun J E. A generalized smoothed particle hydrodynamic method for nonlinear dynamic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1):225-239.
    [8]
    Cleary P W, Prakash M, Ha J. Novel applications of smoothed particle hydrodynamics (SPH) in metal forming[J]. Journal of Materials Processing Technology, 2006, 177(1):41-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2912c16d0874a46a1bd798037e48ad58
    [9]
    Shin Y S, Lee M, Lam K Y, et al. Modeling mitigation effects of watershield on shock wave[J]. Shock and Vibration, 1998, 5(4):225-234. doi: 10.1155/1998/782032
    [10]
    Libersky L D, Petschek A G. High strain Lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1):67-75.
    [11]
    Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82(12):1013-1024. doi: 10.1086-112164/
    [12]
    Liu G R, Liu M B. Smoothed particle hydrodynamics: A meshfree particle method[M]. German: Springer Berlin /Heidelberg, 2004:1-491.
    [13]
    Monaghan J J. Particle methods for hydrodynamic[J]. Computer Physics Report, 1985, 3(2):71-124. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201512013
    [14]
    Monaghan J J. On the problem of penetration in particle menthods[J]. Journal of Computer Physics, 1989, 82(1):1-15.
    [15]
    Monaghan J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8):1703-1759. doi: 10.1088/0034-4885/68/8/R01
  • Cited by

    Periodical cited type(6)

    1. 孙士明,刘广涛,颜开,王志. 入水参数对航行体亚音速入水过程影响的数值研究. 中国造船. 2023(01): 1-12 .
    2. 郝常乐,党建军,陈长盛,黄闯. 基于双向流固耦合的超空泡射弹入水研究. 力学学报. 2022(03): 678-687 .
    3. 王沙沙,张翔宇,邱国志,龚景海. 一种分析膜面在积水荷载作用下响应的数值模型. 上海交通大学学报. 2022(06): 730-738 .
    4. 郭张霞,罗鹏,范光明,郝一凝. 基于数值波浪的回转体斜侵入水研究. 火炮发射与控制学报. 2020(01): 29-32+70 .
    5. 施红辉,周东辉,周栋,贾会霞. 两连发射弹出入水的轴对称超空泡流动特性. 空气动力学学报. 2020(06): 1064-1074 .
    6. 汪柳俊,殷同,叶海旺,邓星星,龙梅,雷涛,李宁,王其洲. 基于FEM-SPH耦合方法的玉石地下开采爆破试验研究. 爆破. 2018(04): 6-13+128 .

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (6725) PDF downloads(787) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return