Citation: | Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07 |
[1] |
Thomason P F. A view on ductile-fracture modelling[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21(9):1105-1122. https://www.researchgate.net/publication/229518515_A_View_on_ductile-fracture_modelling
|
[2] |
Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110(3):033513. doi: 10.1063/1.3607294
|
[3] |
Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1):157-169. doi: 10.1016/0001-6160(84)90213-X
|
[4] |
Benzerga A A. Micromechanics of coalescence in ductile fracture[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(6):1331-1362. doi: 10.1016/S0022-5096(01)00125-9
|
[5] |
Gao X, Kim J. Modelling of ductile fracture: Significance of void coalescence[J]. International Journal of Solids and Structures, 2006, 43(20):6277-6293. doi: 10.1016/j.ijsolstr.2005.08.008
|
[6] |
黄筑平, 杨黎明, 潘客麟.材料的动态损伤和失效[J].力学进展, 1993, 23(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023
Huang Zhuping, Yang Liming, Pan Keling. Dynamic damage and failure of materials[J]. Adavances in Mechanics, 1993, 3(4):433-467. http://d.old.wanfangdata.com.cn/Periodical/gthjjs201304023
|
[7] |
Pardoen T, Hutchinson J W. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12):2467-2512. doi: 10.1016/S0022-5096(00)00019-3
|
[8] |
Horstemeyer M F, Matalanis M M, Sieber A M, et al. Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence[J]. International Journal of Plasticity, 2000, 16(7):979-1015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b37e93469f2922e87ae03d47e0ed954
|
[9] |
Seppala E T, Belak J, Rudd R E. Three-dimensional molecular dynamic simulation of void coalescence during dynamic fracture of ductile metals[J]. Physics Review: B, 2005, 71(6):064112. doi: 10.1103/PhysRevB.71.064112
|
[10] |
Thomason P F. Ductile spallation fracture and the mechanics of void growth and coalescence under shock loading conditions[J]. Acta Materials, 1999, 47(13):3633-3646. doi: 10.1016/S1359-6454(99)00223-2
|
[11] |
Tonks D L, Zurek A K, Thissell W R. Coalescence rate model for ductile damage in metals[J]. Journal de Physique Ⅳ France, 2003, 110:893-898. doi: 10.1051/jp4:20020807
|
[12] |
Pardoen T, Scheyvaerts F, Tekoglu C, et al. Recent progress in micromechanics-based modeling of void coalescence[C]//The SEM Annual Conference. New Mexico, Albuquerque, USA, 2009.
|
[13] |
Feng J P, Jing F Q, Zhang G R. Dynamic ductile fragmentation and the damage function model[J]. Journal of Applied Physics, 1997, 81(6):2575-2578. doi: 10.1063/1.363921
|
[14] |
Jacques N, Mercier S, Molinari A. Void coalescence in a porous solid under dynamic loading conditions[J]. International Journal of Fravture, 2012, 173(2):203-213. doi: 10.1007/s10704-012-9683-5
|
[15] |
Hosokawa A, Wilkinson D S, Kang J D, et al. Void growth and coalescence in model materials investigated by high-resolution X-ray microtomography[J]. International Journal of Fracture, 2013, 181(1):51-66. doi: 10.1007/s10704-013-9820-9
|
[16] |
Hosokawa A, Wilkinson D S, Kang J D, et al. Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography[J]. Acta Materialia, 2013, 61(4):1021-1036. doi: 10.1016/j.actamat.2012.08.002
|
[17] |
Llorca F, Roy G. Metallurgical investigation of dynamic damage in tantalum[C]//13th APS Topical Conference on Shock Compression of Condensed Matter. Portland, Oregon, 2003: 589-592.
|
[18] |
Lii G T G, Bourne N K, Vecchio K S, et al. Influence of anisotropy (crystallographic and microstructural) on spallation in Zr, Ta, HY-100 steel, and 1080 eutectoid steel[J]. International Journal of Fracture, 2010, 163(1):243-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad2df2e3a2e2ca5bf75978c7513272d1
|
[19] |
Venkert A, Guduru P R, Ravichandran G. Effect of loading rate on fracture morphology in a high strength ductile steel[J]. Journal of Engineering Materials and Technology, 2001, 123(3):261-267. doi: 10.1115/1.1371231
|
[20] |
Brown L M, Embury J D. The initiation and growth of void at second phase particles[C]//3rd International Conference on the Strength of Metals and Alloys. London, England, 1973: 164-169.
|
[21] |
Johnson J N. Dynamic fracture and spallation in ductile solids[J]. Journal of Applied Physics, 1981, 52(4):2812-2825. doi: 10.1063/1.329011
|
[22] |
Zhang F G, Zhou H Q, Hu J, et al. Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper[J]. Chinese Physics: B, 2012, 21(9):094601. doi: 10.1088/1674-1056/21/9/094601
|
[23] |
Jacques N, Mercier S, Molinari A. Effects of microscale inertiaon dynamic ductile crack growth[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(4):665-690. doi: 10.1016/j.jmps.2011.12.010
|
[24] |
张凤国, 周洪强.晶粒尺度对延性金属材料层裂损伤的影响[J].物理学报, 2013, 62(16):164601. doi: 10.7498/aps.62.164601
Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62(16):164601. doi: 10.7498/aps.62.164601
|
[25] |
Trivedi P B, Asay J R, Gupta Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. Journal of Applied Physics, 2007, 102(8):083513. doi: 10.1063/1.2798497
|
[1] | WANG Zhiliang, WANG Dawei, WANG Shumin, WU Xutao. Dynamic behaviors and energy dissipation characteristics of marble under cyclic impact loading[J]. Explosion And Shock Waves, 2024, 44(4): 043104. doi: 10.11883/bzycj-2023-0243 |
[2] | LIU Jun, SUN Zhiyuan, ZHANG Fengguo, WANG Pei. Simulation study of the recompression of metal spallation zone[J]. Explosion And Shock Waves, 2022, 42(3): 033101. doi: 10.11883/bzycj-2021-0262 |
[3] | WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467 |
[4] | CAO Xiang, TANG Jiani, WANG Zhu, ZHENG Yuxuan, ZHOU Fenghua. Effect of damage evolution on the fragmentation process of ductile metals[J]. Explosion And Shock Waves, 2020, 40(1): 013102. doi: 10.11883/bzycj-2019-0041 |
[5] | SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015 |
[6] | Gao Fei, Wang Mingyang, Zhang Xianfeng, He Yong, Li Mengshen. A comment on the calculation models for reinforced concrete under intense dynamic loading[J]. Explosion And Shock Waves, 2017, 37(2): 365-376. doi: 10.11883/1001-1455(2017)02-0365-12 |
[7] | Sun Chao-xiang, Ju Yu-tao, Zheng Ya, Wang Peng-bo, Zhang Jun-fa. Mechanical properties of double-base propellant at high strain rates and its damage-modified ZWT constitutive model[J]. Explosion And Shock Waves, 2013, 33(5): 507-512. doi: 10.11883/1001-1455(2013)05-0507-06 |
[8] | Zhang Jie, Su Shao-qing, Zheng Yu, Wang Xiao-jun. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion And Shock Waves, 2013, 33(4): 401-407. doi: 10.11883/1001-1455(2013)04-0401-07 |
[9] | CHEN Yong-tao, TANG Xiao-jun, LI Qing-zhong, HU Hai-bo, XU Yong-bo. Phase transition and abnormal spallation in pure iron[J]. Explosion And Shock Waves, 2009, 29(6): 637-641. doi: 10.11883/1001-1455(2009)06-0637-05 |
[10] | LAN Sheng-wei, ZENG Xin-wu. Effect of grain size on dynamic mechanical properties of pure aluminum[J]. Explosion And Shock Waves, 2008, 28(5): 462-466. doi: 10.11883/1001-1455(2008)05-0462-05 |
[11] | CHEN Yong-tao, LI Qing-zhong, HU Hai-bo. Phase transition and spalling behavior of metal with low transition stress under high pressure[J]. Explosion And Shock Waves, 2008, 28(6): 503-506. doi: 10.11883/1001-1455(2008)06-0503-04 |
[12] | WANG Yong-gang, HE Hong-liang. Effect of tensile strain rate on spall fracture in 20 steel[J]. Explosion And Shock Waves, 2007, 27(3): 193-197. doi: 10.11883/1001-1455(2007)03-0193-05 |
[13] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[14] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[15] | TANG Xiao-jun, HU Hai-bo, LI Qing-zhong, ZHANG Xing-hua, TANG Zhi-ping, HU Ba-yi, TANG Tie-gang. Experimental studies on shock-induced phase transition in HR2 and other Fe-based materials[J]. Explosion And Shock Waves, 2006, 26(2): 115-120. doi: 10.11883/1001-1455(2006)02-0115-06 |
[16] | SUN Zi-jian, WANG Li-li. The constitutive behavior of PP/PA polymer blends taking account of damage evolution at high strain rate and large deformation[J]. Explosion And Shock Waves, 2006, 26(6): 492-497. doi: 10.11883/1001-1455(2006)06-0492-06 |
[17] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[18] | WANG Li-li, DONG Xin-long, SUN Zi-jian. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution[J]. Explosion And Shock Waves, 2006, 26(3): 193-198. doi: 10.11883/1001-1455(2006)03-0193-06 |
[19] | LI Xue-mei, JIN Xiao-gang, LI Da-hong. The spall characteristics of cylindrical steel tube under inward explosion loading[J]. Explosion And Shock Waves, 2005, 25(2): 107-111. doi: 10.11883/1001-1455(2005)02-0107-05 |
[20] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |
1. | 张凤国,刘军,何安民,赵福祺,王裴. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用. 物理学报. 2022(24): 284-292 . ![]() |