Ji Chong, Xu Quan-jun, Wan Wen-qian, Gao Fu-yin, Song Ke-jian. Dynamic responses of steel cylindrical shells under lateral explosion loading[J]. Explosion And Shock Waves, 2014, 34(2): 137-144. doi: 10.11883/1001-1455(2014)02-0137-08
Citation: Deng Jiajie, Zhang Xianfeng, Qiao Zhijun, Guo Lei, He Yong, Chen Dongdong. An analytic model of penetration for oval-nosed projectile penetrating into pre-drilled target[J]. Explosion And Shock Waves, 2016, 36(5): 625-632. doi: 10.11883/1001-1455(2016)05-0625-08

An analytic model of penetration for oval-nosed projectile penetrating into pre-drilled target

doi: 10.11883/1001-1455(2016)05-0625-08
  • Received Date: 2015-02-04
  • Rev Recd Date: 2015-05-20
  • Publish Date: 2016-09-25
  • In this work, to investigate the penetration performance of a projectile into pre-drilled targets, we proposed and improved a penetration model of an oval-nosed projectile penetrating into the pre-drilled target using the conical pre-drilling assumption and coulomb friction model for analyzing the hole drilling/reaming versus the penetration depth and stabilization of the projectile. The analytic model was verified with tests of the projectile penetrating targets made from brittle and elastic-plastic targets. The results from our improved model are fairly consistent with those from the tests. In the case of a cylindrical hole, the impact velocity, CRH and the cavity/radius ratio are in direct proportion to the projectile's penetrating depth into a pre-drilled target. Withe same volume of the penetration, the angle of the conical hole and the relative has a great influence on the penetration depth, and the greater the angle, the weaker the degree to which CRH affects the penetration performance.
  • [1]
    Teland J A. Cavity expansion theory applied to penetration of targets with pre-drilled cavities[C]//19th International Symposium on Ballistics. Interlaken, Switzerland: IBC, 2001: 1329-1335.
    [2]
    张雷雷, 黄风雷.基于修正空腔膨胀理论的随进弹丸侵彻规律分析[J].北京理工大学学报, 2007, 26(12):1038-1042. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200612002

    Zhang Leilei, Huang Fenglei. Analysis on the penetration performance of a following projectile based on modified cavity expansion theory[J]. Transactions of Beijing Institute of Technology, 2007, 26(12):1038-1042. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200612002
    [3]
    王树有.串联侵彻战斗部对钢筋混凝土介质的侵彻机理[D].南京: 南京理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10288-2006183405.htm
    [4]
    王静, 王成.修正的卵形弹丸侵彻带有预制孔混凝土靶板的理论模型与数值模拟研究[J].计算力学学报, 2009, 26(4):558-561. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200904022.htm

    Wang Jing, Wang Cheng. A modified theoretical model of the concrete target with pre-drilled cavities penetrated by the ogive-nose projectile and its numerical simulations[J]. Chinese Journal of Computational Mechanics, 2009, 26(4):558-561. http://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200904022.htm
    [5]
    文鹤鸣, 郭晓钧.空穴膨胀模型及其在二级弹头系统中的应用[C]//第十一届全国冲击动力学学术会议文集.咸阳: 中国力学学会, 2013.
    [6]
    Folsom Jr E N. Projectile penetration into concrete with an inline hole[R]. Lawrence Livermore National Laboratory, UCRL-53786, 1987.
    [7]
    Mostert F J. Penetration of steel penetrators into concrete targets with pre-drilled cavities of different diameters[C]//Proceedings of the 18th International Symposium on Ballistics. San Antonio, Texas, USA: IBC, 1999: 1042-1048.
    [8]
    冯兴民.空腔膨胀的数值模拟研究及其在侵彻力学中的应用[D].长沙: 国防科学技术大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-90002-1011303262.htm
    [9]
    Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. doi: 10.1016/0734-743X(94)80024-4
    [10]
    Forrestal M J, Warren T L. Penetration equations for ogive-nose rods into aluminum targets[J]. International Journal of Impact Engineering, 2008, 35(8):727-730. doi: 10.1016/j.ijimpeng.2007.11.002
    [11]
    柴传国, 皮爱国, 武海军, 等.卵形弹体侵彻混凝土开坑区侵彻阻力计算[J].爆炸与冲击, 2014, 34(5):630-635. doi: 10.11883/1001-1455(2014)05-0630-06

    Chai Chuanguo, Pi Aiguo, Wu Haijun, et al. A calculation of penetration resistance during cratering for ogive-nose projectile into concrete[J]. Explosion and Shock Waves, 2014, 34(5):630-635. doi: 10.11883/1001-1455(2014)05-0630-06
    [12]
    Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F
    [13]
    吴昊, 方秦, 龚自明.考虑刚性弹弹头形状的混凝土(岩石)靶体侵彻深度半理论分析[J].爆炸与冲击, 2012, 32(6):573-580. doi: 10.3969/j.issn.1001-1455.2012.06.003

    Wu Hao, Fang Qin, Gong Ziming. Semi-theoretical analyses for penetration depth of rigid projectiles with different nose geometries into concrete (rock) targets[J]. Explosion and Shock Waves, 2012, 32(6):573-580. doi: 10.3969/j.issn.1001-1455.2012.06.003
    [14]
    Piekutowski A J, Forrestal M J, Poormon K L, et al. Penetration of 6061-T6511 aluminum targets by ogive-nose Steel projectiles with striking velocities between 0.5 and 3.0 km/s[J]. International Journal of Impact Engineering, 1999, 23(1):723-734. doi: 10.1016/S0734-743X(99)00117-7
    [15]
    Forrestal M J, Okajima K, Luk V K. Penetration of 6061-T651 aluminum targets with rigid long rods[J]. Journal of Applied Mechanics, 1988, 55(4):755-760. doi: 10.1115/1.3173718
    [16]
    Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F
    [17]
    Wang Y N, Wu H J, Huang F L, et al. Analysis of rigid motion for penetration of concrete[C]//Proceedings of the 7th International Conference on Shock & Impact Loads on Structures. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2007: 627-638.
    [18]
    午新民, 王中华.国外机载武器战斗部手册[M].北京:兵器工业出版社, 2005.
    [19]
    肖强强, 黄正祥, 祖旭东.双材质复合射流对混凝土的侵彻[J].爆炸与冲击, 2014, 34(4):457-463. doi: 10.3969/j.issn.1001-1455.2012.06.003

    Xiao Qiangqiang, Huang Zhengxiang, Zu Xudong. Penetration of jacketed jet into concrete[J]. Explosion and Shock Waves, 2012, 32(6):573-580. doi: 10.3969/j.issn.1001-1455.2012.06.003
    [20]
    肖强强.聚能装药对典型土壤/混凝土复合介质目标的侵彻研究[D].南京: 南京理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013167550.htm
  • Cited by

    Periodical cited type(10)

    1. 吴启舟,沈意平,王送来,李坚,赵思波,蔡志华,谭广明. 直升机尾传动轴弹体冲击动力响应与失效破坏. 兵器装备工程学报. 2024(05): 119-128 .
    2. 杨坤,张玮,李营,何纤纤. 水下爆炸作用下复合材料圆柱壳结构失效模式分析. 中国舰船研究. 2023(02): 55-63 .
    3. 李豪凯,王党雄,赵嘉敏,吴子燕. 爆炸荷载下钢箱梁桥动力响应机理与关键参数研究. 防灾减灾工程学报. 2023(05): 1112-1121 .
    4. 姜涛,纪冲,刘影,赵长啸. 爆炸荷载下Q345B钢圆管结构的损伤特性研究. 兵器装备工程学报. 2021(01): 224-230 .
    5. 韩大伟,张东俊,王天忠,朱广成. 水下爆炸潜艇综合毁伤评估体系研究. 舰船科学技术. 2021(19): 173-176 .
    6. 余同希,朱凌,许骏. 结构冲击动力学进展(2010-2020). 爆炸与冲击. 2021(12): 4-64 . 本站查看
    7. 丁亮亮,李翔宇,卢芳云,张绍兴,李雪艳. 填充介质柱壳在侧向爆炸载荷作用下的变形机理研究. 兵工学报. 2017(S1): 24-29 .
    8. 王猛,冯敏慧. 自由薄壁钢管在平头弹横向撞击下的动力响应. 沈阳理工大学学报. 2017(04): 62-66+96 .
    9. 顾培英,邓昌,肖仕燕,汤雷,王建. 重力坝均匀冲击破坏模型试验研究. 振动与冲击. 2017(09): 13-19+34 .
    10. 宋克健,龙源,纪冲,高福银,李兴华. 薄壁方管结构在爆炸荷载作用下动力响应及破坏模式分析. 振动与冲击. 2016(10): 133-138 .

    Other cited types(8)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (4614) PDF downloads(623) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return