Volume 36 Issue 5
Oct.  2018
Turn off MathJax
Article Contents
Li Zhibin. Indentation responses of closed-cell aluminum foams at elevated temperatures[J]. Explosion And Shock Waves, 2016, 36(5): 734-738. doi: 10.11883/1001-1455(2016)05-0734-05
Citation: Li Zhibin. Indentation responses of closed-cell aluminum foams at elevated temperatures[J]. Explosion And Shock Waves, 2016, 36(5): 734-738. doi: 10.11883/1001-1455(2016)05-0734-05

Indentation responses of closed-cell aluminum foams at elevated temperatures

doi: 10.11883/1001-1455(2016)05-0734-05
  • Received Date: 2014-11-10
  • Rev Recd Date: 2015-04-22
  • Publish Date: 2016-09-25
  • Indentation responses and deformation characteristics of closed-cell aluminum foams under elevated temperatures were experimentally investigated by using a flat-ended punch (FEP) and a hemispherical-ended punch (SEP). Based on the quasi-static experimental results at elevated temperatures, dimensional analysis and finite element simulations are used to examine the empirical relations of the SEP and FEP indentation load responses and the indentation depth and test temperature. The theoretical predictions based on the results of the analysis are compared with the experiments. It was found that the load responses are described well by the empirical formulas for different indenters at different temperatures. This provides the basis for applying a simple indentation test to investigate the mechanical properties of metallic foams.
  • loading
  • [1]
    Gibson L J, Ashby M F. Cellular solids: Structure and properties[M]. Cambridge, UK: Cambridge University Press, 1997.
    [2]
    Ashby M F, Evans T, Fleck N, et al. Metal foams: A design guide[M]. USA: Society of Automotive Engineers, 2000.
    [3]
    Ruan D, Lu G, Ong L, et al. Triaxial compression of aluminium foams[J]. Composites Science and Technology, 2007, 67(6):1218-1234. doi: 10.1016/j.compscitech.2006.05.005
    [4]
    Ramamurty U, Kumaran M C. Mechanical property extraction through conical indentation of a closed-cell aluminum foam[J]. Acta Materialia, 2004, 52(1):181-189. doi: 10.1016/j.actamat.2003.09.004
    [5]
    Li Q M, Maharaj R N, Reid S R. Penetration resistance of aluminium foam[J]. International Journal of Vehicle Design, 2005, 37(2/3):175-184. doi: 10.1504/IJVD.2005.006706
    [6]
    Yan W, Pun C L. Spherical indentation of metallic foams[J]. Materials Science and Engineering: A, 2010, 527(13/14):3166-3175. https://www.sciencedirect.com/science/article/abs/pii/S0921509310001000
    [7]
    Olurin O B, Fleck N A, Ashby M F. Indentation resistance of an aluminium foam[J]. Scripta Materialia, 2000, 43(11):983-989. doi: 10.1016/S1359-6462(00)00519-4
    [8]
    Kumar P S, Ramachandra S, Ramamurty U. Effect of displacement-rate on the indentation behavior of an aluminum foam[J]. Materials Science and Engineering: A, 2003, 347(1/2):330-337. https://www.sciencedirect.com/science/article/abs/pii/S0921509302006081
    [9]
    Lu G, Shen J, Hou W, et al. Dynamic indentation and penetration of aluminium foams[J]. International Journal of Mechanical Sciences, 2008, 50(5):932-943. doi: 10.1016/j.ijmecsci.2007.09.006
    [10]
    Ramachandra S, Kumar P S, Ramamurty U. Impact energy absorption in an Al foam at low velocities[J]. Scripta Materialia, 2003, 49(8):741-745. doi: 10.1016/S1359-6462(03)00431-7
    [11]
    王鹏飞, 徐松林, 李志斌, 等.高温下轻质泡沫铝动态力学性能实验研究[J].爆炸与冲击, 2014, 34(4):433-438. doi: 10.11883/1001-1455(2014)04-0433-06

    Wang Pengfei, Xu Songlin, Li Zhibin, et al. An experimental study on dynamic mechanical property of ultra-light aluminum foam under high temperatures[J]. Explosion and Shock Waves, 2014, 34(4):433-438. doi: 10.11883/1001-1455(2014)04-0433-06
    [12]
    王鹏飞, 徐松林, 李志斌, 等.微结构对多孔材料应变率效应影响的机理研究[J].爆炸与冲击, 2014, 34(3):285-291. doi: 10.11883/1001-1455(2014)03-0285-07

    Wang Pengfei, Xu Songlin, Li Zhibin, et al. Effect of micro-structure on the strain rate of cellular material[J]. Explosion and Shock Waves, 2014, 34(3):285-291. doi: 10.11883/1001-1455(2014)03-0285-07
    [13]
    Onck P R, Andrews E W, Gibson L J. Size effects in ductile cellular solids.part Ⅰ: modeling[J]. International Journal of Mechanical Sciences, 2001, 43(3):681-699. doi: 10.1016/S0020-7403(00)00042-4
    [14]
    Andrews E W, Gioux G, Onck P, et al. Size effects in ductile cellular solids.part Ⅱ:experimental results[J]. International Journal of Mechanical Sciences, 2001, 43(3):701-13. doi: 10.1016/S0020-7403(00)00043-6
    [15]
    Tekoglu C, Gibson L J, Pardoen T, et al. Size effects in foams:experiments and modeling[J]. Progress in Materials Science, 2011, 56(2):109-138. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_049028ff4f555b014b76c180b3af34b2
    [16]
    李志斌.闭孔泡沫铝及其夹芯结构的高温力学行为研究[D].合肥: 中国科学技术大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013218160.htm
    [17]
    Li Z B, Zheng Z J, Yu J L, et al. Effect of temperature on the indentation behavior of closed-cell aluminum foam[J]. Materials Science and Engineering: A, 2012, 550:222-226. doi: 10.1016/j.msea.2012.04.062
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (4324) PDF downloads(456) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return