Volume 36 Issue 6
Oct.  2018
Turn off MathJax
Article Contents
Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07
Citation: Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07

Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency

doi: 10.11883/1001-1455(2016)06-0752-07
  • Received Date: 2015-04-13
  • Rev Recd Date: 2016-01-06
  • Publish Date: 2016-11-25
  • This paper carried out high-speed penetration experiments using semi-infinite plain concrete targets with different projectile materials and aspect ratios to investigate the effects of striking velocity and material strength on projectile loss and penetration efficiency. Characterized with caliber-radius-head (CRH) 3.0 and 30-mm diameter, the ogive-nose projectiles were launched at high-speed striking velocities between 880-1 900 m/s to impact the concrete target. The measured experiment data indicates that the penetration efficiency is in parabolic relation with the striking velocity, i.e. the maximum penetration efficiency corresponds to an impact velocity of about 1 400 m/s. The main abrasion occurs around the projectile nose while only negligible erosion is observed at the projectile shank and end cap. When the speed exceeds the characteristic impact velocity, the projectile's mass loss is so serious that even bending deformation or disintegration occurs. When the projectile strength is nearly doubled, the mass loss is reduced by about 80%. Based on the experimental data, the relationship function of dimensionless penetration efficiency and impact velocity was achieved using dimensional analysis. The dimensionless model obtained in this paper is capable of predicting the corresponding impact speed for the maximum penetration efficiency, thereby providing theoretical guidance for high-speed simulated penetration experiments.
  • loading
  • [1]
    宋梅利, 王晓鸣, 赵希芳, 等.弹体高速侵彻混凝土靶侵彻效率影响因素分析[J].南京理工大学学报, 2014, 38(3):390-395. doi: 10.3969/j.issn.1005-9830.2014.03.015

    Song Meili, Wang Xiaoming, Zhao Xifang, et al. Influencing factors of penetration efficiency for projectiles' high-speed penetration into concrete targets[J]. Journal of Nanjing University of Science and Technology, 2014, 38(3):390-395. doi: 10.3969/j.issn.1005-9830.2014.03.015
    [2]
    Nelson R W. Low-yield earth-penetrating nuclear weapons[J]. Science and Global Security, 2002, 10(1):1-20. doi: 10.1080/08929880212326
    [3]
    Forrestal M J, Frew D J, Hanchak S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles[J]. International Journal of Impact Engineering, 1996, 18(5):465-476. doi: 10.1016/0734-743X(95)00048-F
    [4]
    Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. doi: 10.1016/0734-743X(94)80024-4
    [5]
    Davis R N, Neely A M, Jones S E. Mass loss and blunting during high-speed penetration[J]. Proceedings of the Institution of Mechanical Engineers: Part C, 2004, 218(9):1053-1062. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC029838652/
    [6]
    Mu Z C, Zhang W. An investigation on mass loss of ogival projectiles penetrating concrete targets[J]. Intrnational Journal of Impact Engineering, 2011, 38(8):770-778. http://cn.bing.com/academic/profile?id=2c0e4470dc82018a49a6e87b001d31b2&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    Chen X W, Li Q M. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics, 2004, 130(1):123-127. doi: 10.1061/(ASCE)0733-9399(2004)130:1(123)
    [8]
    谢多夫.力学中的相似方法与量纲理论[M].沈青, 倪锄非, 李维新, 译.北京: 科学出版社, 1982.
    [9]
    Chen X W, He L L, Yang S Q. Modeling on mass abrasion of kinetic energy penetrator[J]. European Journal of Mechanics A: Solids, 2010, 29(1):7-17. doi: 10.1016/j.euromechsol.2009.07.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (4479) PDF downloads(582) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return