Volume 36 Issue 6
Oct.  2018
Turn off MathJax
Article Contents
Zhong Guosheng, Ao Liping, Fu Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion And Shock Waves, 2016, 36(6): 853-860. doi: 10.11883/1001-1455(2016)06-0853-08
Citation: Zhong Guosheng, Ao Liping, Fu Yuhua. Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation[J]. Explosion And Shock Waves, 2016, 36(6): 853-860. doi: 10.11883/1001-1455(2016)06-0853-08

Model experimental studies of vibration effect and damage evolution of tunnel's surrounding rock under cyclic blasting excavation

doi: 10.11883/1001-1455(2016)06-0853-08
  • Received Date: 2015-03-25
  • Rev Recd Date: 2015-06-26
  • Publish Date: 2016-11-25
  • In this work, based on the similarity theory, we conducted a model experiment to study the vibration effect and damage evolution of rocks surrounding a tunnel in push-type cyclic blasting excavation. The model was constructed with a ratio of 1: 15. By simulating the tunnel excavation of push-type cyclic blasting, we explored the influence of the change of blasting parameters on the vibration effect. The degree of the damage of the surrounding rock was evaluated by the change of the acoustic velocity at the same measuring point after blasting. The relationship between the damage evolution of the surrounding rock and the times of blasting was established. We arrived at the following results: (1) When the maximum section dose was about the same, the influence of the initiation section number on the dielectric coefficient (K) of Sodev formula was very small, but it was great on the attenuation coefficient of Sodev formula; (2) In push-type cyclic blasting excavation, there was a great difference in the decrease rates of the acoustic velocity among the measuring points with the same distance to the blasting region at the same depth, and the blasting damage ranges of the surrounding rock were typically an isotropic in terms of both depth and width; (3) When the blasting parameters were basically the same, the growth trend of the cumulative acoustic velocity's decrease rate at the measuring point was nonlinear in different cyclic blasting excavation; (4) There were nonlinear evolution characteristics between the blasting cumulative damage (D) of the surrounding rock and the times of blasting (n) under push-type cyclic blasting loading, and different measuring points had different blasting cumulative damage propagation models. The closer the measuring point was to the explosion source, the faster the cumulative damage extension. Blasting cumulative damage effect of the surrounding rock had typically nonlinear evolution properties and anisotropic characteristics.
  • loading
  • [1]
    Grady D E, Kipp M E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1980, 17(3):147-157. doi: 10.1016/0148-9062(80)91361-3
    [2]
    Taylor L M, Chen E P, Kuszmaul J S. Micro-crack induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3):301-320. doi: 10.1016/0045-7825(86)90057-5
    [3]
    Ahrens T J, Rubin A M. Impact-induced tensional failure in rock[J]. Journal of Geophysical Research, 1993, 98(E1):1185-1203. doi: 10.1029/92JE02679
    [4]
    Meglis I L, Chow T M, Martin C D. Assessing in situ microcrack damage using ultrasonic velocity tomography[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1):25-34. doi: 10.1016/j.ijrmms.2004.06.002
    [5]
    马建军.岩石爆破的相对损伤与损伤累积计算[J].岩土力学, 2006, 27(6):961-964. doi: 10.3969/j.issn.1000-7598.2006.06.022

    Ma Jianjun. Relative damage and computation of damage cumulation for blasting in rock[J]. Rock and Soil Mechanics, 2006, 27(6):961-964. doi: 10.3969/j.issn.1000-7598.2006.06.022
    [6]
    Yan Changbin. Blasting cumulative damage effects of underground engineering rock mass based on sonic wave measurement[J]. Journal Central South University of Technology, 2007, 14(2):230-235. doi: 10.1007/s11771-007-0046-8
    [7]
    夏祥, 李俊如, 李海波, 等.广东岭澳核电站爆破开挖岩体损伤特征研究[J].岩石力学与工程学报, 2007, 26(12):2510-2517. doi: 10.3321/j.issn:1000-6915.2007.12.017

    Xia Xiang, Li Junru, Li Haibo, et al. Study on damage characteristics of rock mass under blasting load in Ling'ao nuclear power station, guangdong province[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12):2510-2517. doi: 10.3321/j.issn:1000-6915.2007.12.017
    [8]
    张国华, 陈礼彪, 夏祥, 等.大断面隧道爆破开挖围岩损伤范围试验研究及数值计算[J].岩石力学与工程学报, 2009, 28(8):1610-1619. doi: 10.3321/j.issn:1000-6915.2009.08.012

    Zhang Guohua, Chen Libiao, Xia Xiang, et al. Numerical simulation and experimental study of damage range of surrounding rock in large tunnel under blasting excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8):1610-1619. doi: 10.3321/j.issn:1000-6915.2009.08.012
    [9]
    杨国梁, 杨仁树, 车玉龙.周期性爆破振动下围岩的损伤累积效应[J].煤炭学报, 2013, 38(增刊1):25-29. http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z1005

    Yang Guoliang, Yang Shuren, Che Yulong. Damage accumulative effect of surrounding rock under periodic blasting vibration[J]. Journal of China Coal Society, 2013, 38(Suppl 1):25-29. http://d.old.wanfangdata.com.cn/Periodical/mtxb2013z1005
    [10]
    严鹏, 卢文波, 陈明, 等.深部岩体开挖方式对损伤区影响的试验研究[J].岩石力学与工程学报, 2011, 30(6):1097-1106. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106003

    Yan Peng, Lu Wenyuan, Chen Ming, et al. In-situ test research on influence of excavation method on induced damage zone in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6):1097-1106. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201106003
    [11]
    胡英国, 卢文波, 金旭浩, 等.岩石高边坡开挖爆破动力损失的数值仿真[J].岩石力学与工程学报, 2012, 31(11):2204-2213. doi: 10.3969/j.issn.1000-6915.2012.11.008

    Hu Yingguo, Lu Wenyuan, Jin Xuhao, et al. Numerical simulation for excavation blasting dynamic damage of rock high slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11):2204-2213. doi: 10.3969/j.issn.1000-6915.2012.11.008
    [12]
    单仁亮, 宋立伟, 白瑶, 等.爆破作用下冻结岩壁损伤评价的模型试验研究[J].岩石力学与工程学报, 2014, 33(10):1945-1952. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201410001

    Shan Renliang, Song Liwei, Bai Yao, et al. Model test studies of damage evaluation of frozen rock wall under blasting loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10):1945-1952. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201410001
    [13]
    Xiao J Q, Ding D X, Jiang F L, et al. Fatigue damage variable and evolution of rock subjected to cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3):461-468. doi: 10.1016/j.ijrmms.2009.11.003
    [14]
    Casas-Rodriguez J P, Ashcroft I A, Silberschmidt V V. Damage evolution in adhesive joints subjected to impact fatigue[J]. Journal of Sound and Vibration, 2007, 308(3):467-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9024363a0e43a5b33f7a9c44e83ae85e
    [15]
    Martino J B, Chandler N A. Excavation-induced damage studies at the underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1413-1426. doi: 10.1016/j.ijrmms.2004.09.010
    [16]
    崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社, 1990.
    [17]
    Zhong Guosheng, Ao Liping, Zhao Kui. Influence of explosion parameters on wavelet packet frequency band energy distribution of blast vibration[J]. Journal of Central South University, 2012, 19(9):2674-2680. doi: 10.1007/s11771-012-1326-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (4044) PDF downloads(383) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return