Wang Yunfei, Zheng Xiaojuan, Jiao Huazhe, Cheng Fengbin, Zhao Hongbo. Energy evolution mechanism and energy yield criterion in granite's failure process[J]. Explosion And Shock Waves, 2016, 36(6): 876-882. doi: 10.11883/1001-1455(2016)06-0876-07
Citation: Wang Yunfei, Zheng Xiaojuan, Jiao Huazhe, Cheng Fengbin, Zhao Hongbo. Energy evolution mechanism and energy yield criterion in granite's failure process[J]. Explosion And Shock Waves, 2016, 36(6): 876-882. doi: 10.11883/1001-1455(2016)06-0876-07

Energy evolution mechanism and energy yield criterion in granite's failure process

doi: 10.11883/1001-1455(2016)06-0876-07
  • Received Date: 2015-03-04
  • Rev Recd Date: 2015-05-20
  • Publish Date: 2016-11-25
  • To understand the energy evolution mechanism in the rock failure process, this paper firstly obtained the meso-mechanical parameters of granite using uniaxial compression experiments and particle flow codes, then tested the granite under different confining pressures and finally analyzed its energy evolution mechanism in the failure process and deduced its energy yield criterion. The main results are as follows: The internal damage of granite in the failure process occurs earlier under lower confining pressures while later under higher confining pressures, which shows that the internal damage under lower confining pressures is a progressive development process but under higher confining pressures the internal damage rapidly develops into failure once it occurs. The granite's elastic strain energy remains constant in a certain strain range before the peak under higher confining pressures, and the overall energy absorbed transforms into dissipation energy, which shows that the granite internal damage under higher confining pressures is more severe. The elastic strain energy increases and reaches the elastic strain energy limit and then decreases. There exists a linear relationship between the elastic strain energy limit and the confining pressure, therefore rock excavation under high confining pressures is likely to induce a rapid release of a large amount of elastic strain energy which causes the surrounding rock to become unstable and even to burst. The energy ratio at the granite's peak failure is a definite value and independent of the confining pressure. The energy yield criterion is derived based on the principle of energy. It includes lithology parameters and all principal stresses and can reflect the comprehensive factors influencing the rock failure.
  • [1]
    谢和平, 鞠杨, 黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报, 2005, 24(17):3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    Xie Heping, Ju Yang, Li Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17):3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [2]
    谢和平, 彭瑞东, 鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报, 2004, 23(21):3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001

    Xie Heping, Peng Ruidong, Ju Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21):3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
    [3]
    黄达, 黄润秋, 张永兴.粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J].岩石力学与工程学报, 2012, 31(2):245-255. doi: 10.3969/j.issn.1000-6915.2012.02.003

    Huang Da, Huang Runqiu, Zhang Yongxing. Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2):245-255. doi: 10.3969/j.issn.1000-6915.2012.02.003
    [4]
    陈卫忠, 吕森鹏, 郭小红, 等.基于能量原理的卸围压试验与岩爆判据研究[J].岩石力学与工程学报, 2009, 28(8):1530-1540. doi: 10.3321/j.issn:1000-6915.2009.08.003

    Chen Weizhong, Lu Senpeng, Guo Xiaohong, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8):1530-1540. doi: 10.3321/j.issn:1000-6915.2009.08.003
    [5]
    Sanchidrian J A, Segarra P, López L M. Energy components in rock blasting[J]. Rock Mechanics and Mining Sciences, 2007, 44(1):130-147. doi: 10.1016/j.ijrmms.2006.05.002
    [6]
    黎立云, 谢和平, 鞠杨, 等.岩石可释放应变能及耗散能的实验研究[J].工程力学, 2011, 28(3):35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103007.htm

    Li Liyun, Xie Heping, Ju Yang, et al. Experimental investigations of releasable energy and dissipative energy within rock[J]. Engineering Mechanics, 2011, 28(3):35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103007.htm
    [7]
    尤明庆, 华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报, 2002, 21(6):778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004

    You Mingqing, Hua Anzeng. Energy analysis on failure process of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6):778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004
    [8]
    Zhou Yu, Wu Shunchuan, Gao Yongtao, et al. Macro and meso analysis of jointed rock mass triaxial compression test by using equivalent rock mass (ERM) technique[J]. Journal of Central South University, 2014, 21(3):1125-1135. doi: 10.1007/s11771-014-2045-x
    [9]
    罗勇, 龚晓南, 连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报, 2008, 30(2):292-297. doi: 10.3321/j.issn:1000-4548.2008.02.024

    Luo Yong, Gong Xiaonan, Lian Feng. Simulation of mechanical behaviors of granular materials by three-dimensional discrete element method based on particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2):292-297. doi: 10.3321/j.issn:1000-4548.2008.02.024
    [10]
    周小平, 钱七虎, 杨海清.深部岩体强度准则[J].岩石力学与工程学报, 2008, 27(1):117-123. doi: 10.3321/j.issn:1000-6915.2008.01.018

    Zhou Xiaoping, Qian Qihu, Yang Haiqing. Strength criteria of deep rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1):117-123. doi: 10.3321/j.issn:1000-6915.2008.01.018
    [11]
    俞茂宏, 昝月稳, 范文, 等.20世纪岩石强度理论的发展:纪念Mohr-Coulomb强度理论100周年[J].岩石力学与工程学报, 2000, 19(5):545-550. doi: 10.3321/j.issn:1000-6915.2000.05.001

    Yu Maohong, Zan Yuewen, Fan Wen, et al. Advances in strength theory of rock in 20 century: 100 years inmemory of the Mohr-Coulomb strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5):545-550. doi: 10.3321/j.issn:1000-6915.2000.05.001
    [12]
    高红, 郑颖人, 冯夏庭.岩土材料能量屈服准则研究[J].岩石力学与工程学报, 2007, 26(12):2437-2443. doi: 10.3321/j.issn:1000-6915.2007.12.008

    Gao Hong, Zheng Yingren, Feng Xiating. Study on energy yield criterion of geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12):2437-2443. doi: 10.3321/j.issn:1000-6915.2007.12.008
    [13]
    周辉, 李震, 杨艳霜, 等.岩石统一能量屈服准则[J].岩石力学与工程学报, 2013, 32(11):2170-2185. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201311002

    Zhou Hui, Li Zhen, Yang Yanshuang, et al. Unified energy yield criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11):2170-2185. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201311002
    [14]
    Cundall P A, Strack O D. A discrete numerical model for granula assemblies[J]. Géotechnique, 1979, 29(1):47-65. doi: 10.1680/geot.1979.29.1.47
    [15]
    Itasca Consulting Group. PFC3D: Particle flow code in 3 dimensions[R]. Minneapolis, USA: Itasca Consulting Group, 2008.
    [16]
    Solecki R, Conant R J. Advanced mechanics of materials[M]. London: Oxford University Press, 2003.
    [17]
    尤明庆, 苏承东.大理岩试样循环加载强化作用的试验研究[J].固体力学学报, 2009, 29(1):66-72. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb200801010

    You Mingqing, Su Chengdong. Experimental study on strengthening of marble specimen in cyclic loading of uniaxial or pseudo-triaxial compression[J]. Chinese Journal of Solid Mechanics, 2009, 29(1):66-72. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb200801010
    [18]
    余贤斌, 谢强, 李心一, 等.岩石直接拉伸与压缩变形的循环加载实验与双模量本构模型[J].岩土工程学报, 2005, 27(9):988-993. doi: 10.3321/j.issn:1000-4548.2005.09.003

    Yu Xianbin, Xie Qiang, Li Xinyi, et al. Cycle loading tests of rock samples under direct tension and compression and bi-modular constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9):988-993. doi: 10.3321/j.issn:1000-4548.2005.09.003
  • Cited by

    Periodical cited type(10)

    1. 张亮,王桂林,张益晨,任建喜,孙帆. 干湿循环下节理砂岩细观能量演化规律研究. 地下空间与工程学报. 2024(01): 42-54+63 .
    2. 王云飞,董贺,马勇超,张意文,袁乐乐. 含平行双裂隙白砂岩力学行为数值分析. 河南理工大学学报(自然科学版). 2024(03): 161-170 .
    3. 原红超,黄虎,宋元翔,王玉强,郭利霞. 基于能量演化的胶凝砂砾石材料动损伤特征. 中国农村水利水电. 2024(12): 211-219 .
    4. 王云飞,马勇超,董贺. 单轴压缩下预制裂纹岩石的数值模拟. 河南理工大学学报(自然科学版). 2023(06): 157-166 .
    5. 宋治祥,张俊文,董续凯,张杨,张玉杰,安赛. 三轴加卸载下砂岩的时效行为及体积恢复(英文). Journal of Central South University. 2022(12): 4002-4020 .
    6. 李欣慰,姚直书,黄献文,刘之喜,赵翔,穆克汉. 循环加卸载下砂岩变形破坏特征与能量演化研究. 岩土力学. 2021(06): 1693-1704 .
    7. 刘基程,马林建,张宁,王云潇. 岩石变形破坏过程的能量演化研究进展. 地下空间与工程学报. 2021(03): 975-986 .
    8. 赵奎,刘永光,曾鹏,伍文凯,王金鉴. 基于颗粒流GBM模型的花岗岩声发射相对平静期特征研究. 金属矿山. 2021(09): 27-36 .
    9. 龙恩林,陈俊智. 花岗岩颗粒流模型循环压缩作用下能量特征分析. 中国安全生产科学技术. 2019(10): 95-100 .
    10. 杨殷豪,李忠友. 基于能量特征的脆性岩土材料广义拉伸损伤模型. 青岛科技大学学报(自然科学版). 2017(S1): 154-157+164 .

    Other cited types(17)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (4378) PDF downloads(422) Cited by(27)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return