Volume 37 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
Wu Jinguo, Lin Qinghua, Wan Gang, Jin Yong, Li Haiyuan, Li Baoming. 3D numerical research of railgun gouging mechanism based on material point method[J]. Explosion And Shock Waves, 2017, 37(2): 307-314. doi: 10.11883/1001-1455(2017)02-0307-08
Citation: Wu Jinguo, Lin Qinghua, Wan Gang, Jin Yong, Li Haiyuan, Li Baoming. 3D numerical research of railgun gouging mechanism based on material point method[J]. Explosion And Shock Waves, 2017, 37(2): 307-314. doi: 10.11883/1001-1455(2017)02-0307-08

3D numerical research of railgun gouging mechanism based on material point method

doi: 10.11883/1001-1455(2017)02-0307-08
  • Received Date: 2015-07-07
  • Rev Recd Date: 2016-02-29
  • Publish Date: 2017-03-25
  • Based on the structural features of the railgun and the theories of impact thermodynamics, a 3D gouging model containing a micro particle was established using the material point method to simulate the formation process of the rail gouging, and the gouging mechanism and some influencing factors were also analyzed. The results show that the local impact between the armature and the rails at a high velocity produces transient energy exchanges, thus simultaneously forming metal flows with high energy and high pressure that penetrate obliquely into the rail and cause the formation of gouging, for which there is a threshold velocity to produce. As the armature velocity increases, the gouging damage gets more serious. On the other hand, the galling damage occurs when the armature velocity is below the threshold velocity. Both controlling the particle size within a certain range and increasing the head angle of the armature will help to suppress the formation of gouging.
  • loading
  • [1]
    李军, 严萍, 袁伟群.电磁轨道炮发射技术的发展与现状[J].高电压技术, 2014, 40(4):1052-1064. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201404014

    Li Jun, Yan Ping, Yuan Weiqun. Electromagnetic gun technology and it's development[J]. High Votage Engineering, 2014, 40(4):1052-1064. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201404014
    [2]
    Graff K F, Dettloff B B. The gouging phenomenon between metal surfaces at very high sliding speeds[J]. Wear, 1969, 14(2):87-97. doi: 10.1016/0043-1648(69)90339-1
    [3]
    Cinnamon J D, Palazotto A N, Szmerekovsky A G. Further refinement and validation of material models for hypervelocity gouging impacts[J]. American Institute of Aeronautics and Astronautics, 2008, 46(2):317-327. doi: 10.2514/1.25035
    [4]
    Stefani F, Parker J V. Experiments to measure gouging threshold velocity for various metals against copper[J]. IEEE Transactions on Magnetics, 1999, 35(1):312-316. doi: 10.1109/20.738423
    [5]
    Persad C, Prabhu G, White G, et al. Characterization of hypervelocity gouge craters in rail conductors[J]. IEEE Transactions on Magnetics, 1997, 33(1):401-405. doi: 10.1109/20.560045
    [6]
    Watt T J, Clay C E, Bassett P M, et al. The effect of surface indentations on gouging in railguns[J]. Wear, 2014, 310(1/2):41-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=266be5121f733b3a9b099eab65c32ced
    [7]
    Barber J P, Bauer D P, Ahmadi R. Contact phenomena at hypervelocities[J]. Wear, 1982, 78(1/2):163-169. doi: 10.1016-0043-1648(82)90028-X/
    [8]
    Barker L M, Trucano T G, Susoeff A R. Railgun rail gouging by hypervelocity sliding contact[J]. IEEE Transactions on Magnetics, 1989, 25(1):83-87. doi: 10.1109/20.22510
    [9]
    金龙文, 雷彬, 李治源, 等.轨道炮刨削形成机理分析及数值模拟[J].爆炸与冲击, 2013, 33(5):537-543. doi: 10.3969/j.issn.1001-1455.2013.05.014

    Jin Longwen, Lei Bin, Li Zhiyuan, et al. Formation mechanism analysis and numerical simulation of railgun gouging[J]. Explosion and Shock Waves, 2013, 33(5):537-543. doi: 10.3969/j.issn.1001-1455.2013.05.014
    [10]
    Barker L M, Trucano T G, Susoeff A R. Gun barrel gouging by sliding metal contact at very high velocities[J]. IEEE Transactions on Magnetics, 1989, 1(25):83-87.
    [11]
    Bourell D L, Persad C. Simulation of railgun gouging[J]. IEEE Transactions on Magnetics, 1999, 35(1):274-276. doi: 10.1109/20.738416
    [12]
    Zhu Rengui, Zhang Qian, Li Zhiyuan, et al. Impact physics model and influencing factors of gouging for electromagnetic rail launcher[C]//17th International Symposium on Electromagnetic Launch Technology. La Jolla, California, USA, 2014.
    [13]
    刘峰, 赵丽曼, 张晖辉, 等.电磁轨道炮刨削的形成机理及仿真分析[J].高压物理学报, 2015, 29(3):199-205. http://www.cqvip.com/QK/96553X/201503/71898776504849534851484854.html

    Liu Feng, Zhao Liman, Zhang Huihui, et al. Formation mechanism and simulation analysis of railgun gouging[J]. Chinese Journal of High Pressure Physics, 2015, 29(3):199-205. http://www.cqvip.com/QK/96553X/201503/71898776504849534851484854.html
    [14]
    廉艳平, 张帆, 刘岩, 等.物质点法的理论和应用[J].力学进展, 2013, 43(2):237-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013052800030339

    Lian Yanping, Zhang Xiong, Liu Yan, et al. Material point method and its applications[J]. Advances in Mechanics, 2013, 43(2):237-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013052800030339
    [15]
    张雄, 廉艳平, 刘岩, 等.物质点法[M].北京:清华大学出版社, 2013:7-13.

    Zhang Xiong, Lian Yanping, Liu Yan, et al. Material point method[M]. Beijing: Tsinghua University Press, 2013:7-13.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (4431) PDF downloads(399) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return