Gao Na, Zhang Yansong, Hu Yiting. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures[J]. Explosion And Shock Waves, 2017, 37(3): 453-458. doi: 10.11883/1001-1455(2017)03-0453-06
Citation: Gao Na, Zhang Yansong, Hu Yiting. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures[J]. Explosion And Shock Waves, 2017, 37(3): 453-458. doi: 10.11883/1001-1455(2017)03-0453-06

Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures

doi: 10.11883/1001-1455(2017)03-0453-06
  • Received Date: 2015-10-26
  • Rev Recd Date: 2015-12-08
  • Publish Date: 2017-05-25
  • In order to study the influence of initial conditions on methane-air mixtures explosion limits, the explosion limits of methane-air mixtures were obtained experimentally at different initial temperatures up to 200 ℃ and initial pressures up to 1.0 MPa. The experiments were performed in a closed spherical 20 dm3 vessel with an ignition electrode at the center. The results show that with the increasing of initial temperature and initial pressure, the upper explosion limit increases, but the lower explosion limit decreases, that is the explosion limit expands. At atmospheric pressure/ambient temperature, the dependences of the upper explosion limit and lower explosion limit on initial temperature and initial pressure are both linear in the experimental temperature-pressure ranges. The dependence of the upper explosion limit on initial temperature/initial pressure is influenced by the initial pressure/initial temperature, but the dependence of the lower explosion limit on those is not influenced obviously. The coupling effects of initial temperature and initial pressure on the upper explosion limit and lower explosion limit are greater than that of a single factor, especially on the upper explosion limit. Surfaces are formed to describe how the initial temperature and initial pressure influence the upper explosion limit and the lower explosion limit of methane-air mixtures.
  • [1]
    Coronado C J, Carvalho J A Jr, Andrade J C, et al.Flammability limits:A review with emphasis on ethanol for aeronautical applications and description of the experimental procedure[J].Journal of Hazardous Materials, 2012, 241-242:32-54. doi: 10.1016/j.jhazmat.2012.09.035
    [2]
    Van den Schoor F, Verplaetsen F, Berghmans J.Calculation of the upper flammability limit of methane/hydrogen/air mixtures at elevated pressures and temperature[J].International Journal of Hydrogen Energy, 2008, 33(4):1399-1406. doi: 10.1016/j.ijhydene.2008.01.002
    [3]
    Van den Schoor F, Verplaetsen F, Berghmans J.Calculation of the upper flammability limit of methane/air mixtures at elevated pressures and temperatures[J].Journal of Hazardous Materials, 2008, 153(3):1301-1307. doi: 10.1016/j.jhazmat.2007.09.088
    [4]
    Van den Schoor F, Hermanns R TE, Van Oijen J A, et al.Comparison and evaluation of methods for the determination of flammability limits, applied to methane/hydrogen/air mixtures[J].Journal of Hazardous Materials, 2008, 150(3):573-581. doi: 10.1016/j.jhazmat.2007.05.006
    [5]
    Coward H F, Jones G W.Limits of flammability of gases and vapors[M].Washington:United States Government Printing Office, 1952:37-41.
    [6]
    Zabetakis M G.Flammability characteristics of combustible gases and vapors[M].Washington:United States Government Printing Office, 1965:20-27.
    [7]
    Cashdollar K L, Zlochower I A, Green G M, et al.Flammability of methane, propane, and hydrogen gases[J].Journal of Loss Prevention in the Process Industries, 2000, 13(3/4/5):327-340. http://www.sciencedirect.com/science/article/pii/S0950423099000376
    [8]
    Wierzba I, Ale B B.Rich flammability limits of fuel mixture involving hydrogen at elevated temperature[J].International Journal of Hydrogen Energy, 2000, 25(1):75-80. doi: 10.1016/S0360-3199(99)00009-9
    [9]
    Gieras M, Klemens R, Rarata G, et al.Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature[J].Journal of Loss Prevention in the Process Industries, 2006, 19(2/3):263-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4c91882e6c30ee838be2c12bc6d4931
    [10]
    Cooper C M, Wiezevich P J.Effects of temperature and pressure on the upper explosion limit of methane-oxygen mixtures[J].Journal of Industrial and Engineering Chemistry, 1929, 21(12):1210-1214. doi: 10.1021/ie50240a014
    [11]
    Vanderstraeten B, Tuerlinckx D, Berghmans J, et al.Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures[J].Journal of Hazardous Materials, 1997, 56(3):237-246. doi: 10.1016/S0304-3894(97)00045-9
    [12]
    Van den Schoor F, Verplaetsen F.The upper explosion limit of lower alkanes and alkenes in air at elevated pressure and temperature[J].Journal of Hazardous Materials, 2006, 128(1):1-9. doi: 10.1016/j.jhazmat.2005.06.043
    [13]
    Van den Schoor F, Verplaetsen F.The upper flammability limit of methane/hydrogen/air mixtures at elevated pressure and temperatures[J].International Journal of Hydrogen Energy, 2008, 32(13):2548-2552. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d29ed8e4047b8942cbe024fb139ff2b9
    [14]
    ASTM International.Standard test methods for limiting oxygen (oxidant) concentration in gases and vapors:ASTM E2079-07[S].American Society for Testing and Materials, 2013:1-2.
  • Cited by

    Periodical cited type(18)

    1. 闫兴清,喻健良,王柏,宋一兵. 高温工况燃气爆炸下限工程预测方法探讨. 辽宁化工. 2024(02): 258-261+268 .
    2. 刘可心,刘炜,孙亚松. 多因素耦合作用对甲烷爆炸特性的影响. 爆炸与冲击. 2023(03): 20-29 . 本站查看
    3. 贺杰,程凯,张金. 氧化煤尘的爆炸特性及其变化规律. 煤矿安全. 2023(03): 67-72 .
    4. 夏煜,程扬帆,李世周,朱守军,李子涵,沈兆武. 无约束条件下甲烷/空气预混气体燃爆特性研究. 实验力学. 2023(02): 243-253 .
    5. 宁也,何萌,祁畅,陈昇,闫兴清,喻健良. 三元可燃混合气体爆炸极限实验及预测方法. 爆炸与冲击. 2023(04): 131-139 . 本站查看
    6. 安国钰,徐宁,熊小琴. 基于绝热火焰温度法的掺氢天然气爆炸下限计算模型. 消防科学与技术. 2023(12): 1651-1655+1693 .
    7. 罗振敏,刘利涛,王涛,张江,程方明. C_2H_6、C_2H_4、CO与H_2对甲烷爆炸压力及动力学特性影响. 工程科学学报. 2022(03): 339-347 .
    8. 钟飞翔,郑立刚,马鸿雁,杜德朋,王玺,潘荣锟. CH_4/O_2/CO_2预混体系爆炸动力学研究. 爆炸与冲击. 2022(01): 4-17 . 本站查看
    9. 马云龙. 圆孔障碍物对压力重叠影响的实验研究. 煤矿安全. 2022(07): 70-73 .
    10. 王莉莉,陈争辉,付世博,刘英杰,张钰,齐晗兵. 密闭空间内混合气体爆炸超压的仿真模拟研究. 河南科学. 2022(11): 1834-1841 .
    11. 杨龙龙,刘艳,杨春丽. 不同湿度和近爆炸下限条件下甲烷-空气混合物爆炸特征. 爆炸与冲击. 2021(02): 166-175 . 本站查看
    12. 薛少谦,黄子超,杜宇婷,司荣军. 基于爆炸强度与隔爆屏障作用技术的巷道隔爆实验. 煤炭学报. 2021(06): 1791-1798 .
    13. 闫侠,邵伟,许巍巍,梁峻. 惰性气体对异丙醇爆炸抑制作用的试验研究. 消防科学与技术. 2020(01): 35-37 .
    14. 张小良,李浩,杨璐颖,匡亚南. 苯、甲苯、二甲苯液体蒸汽在160℃条件下的爆炸上限研究. 山东化工. 2019(12): 46-48 .
    15. 郭寿松. 瓦斯压力对发电功率的影响研究. 能源与环保. 2019(07): 129-132+137 .
    16. 白刚,周西华,宋东平. 温度与CO气体耦合作用对瓦斯爆炸界限影响实验. 高压物理学报. 2019(04): 189-196 .
    17. 喻健良,姚福桐,于小哲,闫兴清,罗灿,张炼卓. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究. 爆炸与冲击. 2019(12): 17-23 . 本站查看
    18. 李飞. 温度压力耦合下甲烷爆炸极限变化规律研究. 消防界(电子版). 2017(04): 98 .

    Other cited types(23)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (4574) PDF downloads(599) Cited by(41)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return